9x-3=14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)
=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)
<=> \(y^3=16+6y\)
=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)
=> \(x^3+3x^2+3x+1=6x+32\)
<=> \(x^3+3x^2-3x-5=26\)
Ta có:
\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
= \(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)
= \(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)
= \(26x^3+2111\)
\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)
\(C=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
Ta được:
\(C=t\left(t+1\right)-12\)
\(C=t^2+t-12\)
\(C=t^2+4t-3t-12\)
\(C=t\left(t+4\right)-3\left(t+4\right)\)
\(C=\left(t+4\right)\left(x-3\right)\)
\(C=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(C=\left(x^2+x+5\right)\left(x^2-x+2x-2\right)\)
\(C=\left(x^2+x+5\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(C=\left(x^2+x+5\right)\left(x-1\right)\left(x+2\right)\)
Vậy....
\(\left(x^2+x\right)^2+9x^2+9x+14\)
\(=x^4+2x^3+10x^2+9x+14\)
\(=x^4+x^3+2x^2+x^3+x^2+2x+7x^2+7x+14\)
\(=x^2\left(x^2+x+2\right)+x\left(x^2+x+2\right)+7\left(x^2+x+2\right) \)
\(=\left(x^2+x+2\right)\left(x^2+x+7\right)\)
x3 - 6x2 - 9x + 14 = 0
<=> (x3 - x2) - 5x2 + 5x - 14x + 14 = 0
<=> x2(x - 1) - 5x(x - 1) - 14(x - 1) = 0
<=> (x2 - 5x - 14)(x - 1) = 0
<=> (x2 + 2x - 7x - 14)(x - 1) = 0
<=> (x + 2)(x - 7)(x - 1) = 0
<=> \(x\in\left\{1;-2;7\right\}\)
\(x^3-6x^2-9x+14=0\)
\(\Leftrightarrow x^3-7x^2+x^2-7x-2x+14=0\)
\(\Leftrightarrow x^2\left(x-7\right)+x\left(x-7\right)-2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+2\right)\left(x-1\right)=0\)
\(\Rightarrow x=\left\{7;-2;1\right\}\)
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(9x-3=14\)
\(9x=14+3=17\)
\(9x=17\)
\(x=17\div9=\dfrac{17}{9}\)
\(x=\dfrac{17}{9}\)
~nhớ tk và hok tốt~
@Đinh Sơn Tùng