cho a,b,c bất kì. C/m 4a4+4a3+5a2 - 2a + 1 \(\ge\) 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)\(a^2+b^2\ge\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{1}{4}\)(1)
Lại có:\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow\left(1\right)\) đúng\(\Rightarrowđpcm\)
1b)\(a^2+b^2+c^2\ge\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{1}{6}\)(2)
Lại có:\(\dfrac{a^2}{2}+\dfrac{b^2}{2}+\dfrac{c^2}{2}\ge\dfrac{\left(a+b+c\right)^2}{6}=\dfrac{1}{6}\)
\(\Rightarrow\left(2\right)\) đúng\(\Rightarrowđpcm\)
2b)Ta có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(bđt phụ)
\(\Leftrightarrow ab+bc+ca\le\dfrac{4^2}{3}=\dfrac{16}{3}\)
\(\Rightarrow MAXA=\dfrac{16}{3}\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)
Vậy ta cần chứng minh:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Vậy bất đẳng thức ban đầu được chứng minh.
Ban đầu lớp 4A3 trồng nhiều hơn lớp 4A3 số cây thông là: 13 + 13 = 26 (cây)
Lớp 4A trồng được: (2348+26):2= 1187 (cây)
Lớp 4B trồng được: 1187 - 26 = 1161 (cây)
Đ.số:.....
\(a^2+b^2+c^2\ge\frac{1}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đung)
Đề bài này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Nếu đề đúng như thế thì chứng minh như sau:
\(VT=\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{b+c-a}\)
Ta có: \(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{b}\) ; \(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{2}{c}\)
Cộng vế với vế:
\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta chứng minh:
a2 + b2 + c2 \(\ge\) ab + bc + ac
Nhân cả 2 vế với 2 ta được :
= 2a2 + 2b2 + 2c2 \(\ge\) 2ab + 2bc + 2ac
= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac \(\ge0\)
= ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) \(\ge0\)
= ( a - b )2 + ( b - c)2 + ( a - c )2 \(\ge0\) ( luôn đúng )
\(\Rightarrow\)a2 + b2 + c2 \(\ge\)ab + bc + ac
Ta có : a2 + b2 + c2 \(\ge\)ab + bc + ac
Nhân cả 2 vế với 2 ta được :
2 ( a2 + b2 + c2 ) \(\ge\) 2 ( ab + bc + ac )
Cộng cả 2 vế với : a2 + b2 + c2 ta được :
3 ( a2 + b2 + c2 ) \(\ge\) a2 + b2 + c2 + 2ab + 2bc + 2ac
3 ( a2 + b2 + c2 ) \(\ge\) ( a + b + c )2
3 ( a2 + b2 + c2 ) \(\ge\)1
a2 + b2 + c2 \(\ge\)\(\frac{1}{3}\) ( đpcm)
Ta chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (Đúng)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Giải chi tiết cho dễ hiểu
Cách khác nè:
Áp dụng BĐT bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
a; b; c bất kì thế c, b đâu em nhỉ?