Tam giác BEF đều có độ dài 1 cạnh bằng A đường cao EH.Tính tỉ số lượng giác của góc DEH và Góc EFH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{B}=60^0\)
AB=8cm
\(AC=4\sqrt{3}\left(cm\right)\)
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
4:
a: Gọi độ dài cạnh góc vuông cần tìm là x
Theo đề, ta có: x^2+x^2=a^2
=>2x^2=a^2
=>x^2=a^2/2=2a^2/4
=>\(x=\dfrac{a\sqrt{2}}{2}\)
b:
Độ dài cạnh là;
\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)
5:
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>13^2=12^2+HB^2
=>HB=5cm
BC=5+16=21cm
ΔAHC vuông tại H
=>AH^2+HC^2=AC^2
=>AC^2=16^2+12^2=400
=>AC=20(cm)
Sửa đề: Cho ΔDEF đều
ΔDEF đều
=>\(\widehat{EFH}=60^0\)
=>\(sinEFH=sin60=\dfrac{\sqrt{3}}{2};cosEFH=cos60=\dfrac{1}{2}\)
\(tanEFH=tan60=\sqrt{3};cotEFH=cot60=\dfrac{1}{\sqrt{3}}\)
ΔDEF đều
mà EH là đường cao
nên EH là phân giác của góc DEF
=>\(\widehat{DEH}=30^0\)
=>\(sinDEH=sin30=\dfrac{1}{2};cosDEH=cos30=\dfrac{\sqrt{3}}{2}\)
\(tanDEH=tan30=\dfrac{1}{\sqrt{3}};cotDEH=cot30=\sqrt{3}\)