K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Cho ΔDEF đều

ΔDEF đều

=>\(\widehat{EFH}=60^0\)

=>\(sinEFH=sin60=\dfrac{\sqrt{3}}{2};cosEFH=cos60=\dfrac{1}{2}\)

\(tanEFH=tan60=\sqrt{3};cotEFH=cot60=\dfrac{1}{\sqrt{3}}\)

ΔDEF đều

mà EH là đường cao

nên EH là phân giác của góc DEF

=>\(\widehat{DEH}=30^0\)

=>\(sinDEH=sin30=\dfrac{1}{2};cosDEH=cos30=\dfrac{\sqrt{3}}{2}\)

\(tanDEH=tan30=\dfrac{1}{\sqrt{3}};cotDEH=cot30=\sqrt{3}\)

28 tháng 8 2018

Tôi mới học lớp 6

17 tháng 10 2021

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

a: AB/AC=30/15=2

b: I ở đâu vậy bạn?

12 tháng 5 2023

Mình viết sai sửa lại r đó ạ

20 tháng 7 2019

đm hỏi bậy

14 tháng 2 2018

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)

4:

a: Gọi độ dài cạnh góc vuông cần tìm là x

Theo đề, ta có: x^2+x^2=a^2

=>2x^2=a^2

=>x^2=a^2/2=2a^2/4

=>\(x=\dfrac{a\sqrt{2}}{2}\)

b:

Độ dài cạnh là;

\(h:\dfrac{\sqrt{3}}{2}=\dfrac{2h}{\sqrt{3}}\)

5: 

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>13^2=12^2+HB^2

=>HB=5cm

BC=5+16=21cm

ΔAHC vuông tại H

=>AH^2+HC^2=AC^2

=>AC^2=16^2+12^2=400

=>AC=20(cm)