\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: \(\dfrac{5x+1}{8}-\dfrac{x-2}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow5x+1-2\left(x-2\right)=4\)
\(\Leftrightarrow5x+1-2x+4=4\)
\(\Leftrightarrow3x=-1\)
hay \(x=-\dfrac{1}{3}\)
2: Ta có: \(\dfrac{x+3}{4}+\dfrac{1-3x}{3}=\dfrac{-x+1}{18}\)
\(\Leftrightarrow9x+27+12-36x=-2x+2\)
\(\Leftrightarrow-27x+2x=2-39\)
hay \(x=\dfrac{37}{25}\)
3: Ta có: \(\dfrac{x+2}{4}-\dfrac{5x}{6}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x+6-10x=4-4x\)
\(\Leftrightarrow-7x+4x=4-6=-2\)
hay \(x=\dfrac{2}{3}\)
4: Ta có: \(\dfrac{x-3}{2}-\dfrac{x+1}{10}=\dfrac{x-2}{5}\)
\(\Leftrightarrow5x-15-x-1=2x-4\)
\(\Leftrightarrow4x-2x=-4+16=12\)
hay x=6
5: Ta có: \(\dfrac{4x+1}{4}-\dfrac{9x-5}{12}+\dfrac{x-2}{3}=0\)
\(\Leftrightarrow12x+3-9x+5+4x-8=0\)
\(\Leftrightarrow7x=0\)
hay x=0
\(2\dfrac{2}{5}-y:2\dfrac{3}{4}=1\dfrac{1}{2}\\ \dfrac{12}{5}-y:\dfrac{11}{4}=\dfrac{3}{2}\\ y:\dfrac{11}{4}=\dfrac{12}{5}-\dfrac{3}{2}\\ y:\dfrac{11}{4}=\dfrac{9}{10}\\ y=\dfrac{9}{10}\times\dfrac{11}{4}=\dfrac{99}{40}\\ b,1\dfrac{1}{4}+2\dfrac{1}{5}\times y=2\dfrac{3}{5}\\ \dfrac{5}{4}+\dfrac{11}{5}\times y=\dfrac{13}{5}\\ \dfrac{11}{5}\times y=\dfrac{13}{5}-\dfrac{5}{4}\\ \dfrac{11}{5}\times y=\dfrac{27}{20}\\ y=\dfrac{27}{20}:\dfrac{11}{5}=\dfrac{27}{44}\)
\(c,2\dfrac{4}{5}-2\dfrac{1}{4}:y=\dfrac{3}{4}\\ \dfrac{14}{5}-\dfrac{9}{4}:y=\dfrac{3}{4}\\ \dfrac{9}{4}:y=\dfrac{14}{5}-\dfrac{3}{4}\\ \dfrac{9}{4}:y=\dfrac{41}{20}\\ y=\dfrac{9}{4}:\dfrac{41}{20}=\dfrac{45}{41}\\ c2,x:3\dfrac{1}{3}=2\dfrac{2}{5}+\dfrac{7}{10}\\ x:\dfrac{10}{3}=\dfrac{12}{5}+\dfrac{7}{10}\\ x:\dfrac{10}{3}=\dfrac{31}{10}\\ x=\dfrac{31}{10}\times\dfrac{10}{3}=\dfrac{31}{3}\)
8,A=\(\dfrac{9}{10}-\left(\dfrac{1}{10\times9}+\dfrac{1}{9\times8}+\dfrac{1}{8\times7}+...+\dfrac{1}{2\times1}\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+...+\dfrac{1}{2}-1\right)\)
=\(\dfrac{9}{10}-\left(\dfrac{1}{10}-1\right)\)
=\(\dfrac{9}{10}-\dfrac{\left(-9\right)}{10}\)
=\(\dfrac{9}{5}\)
Câu 1:
\(\Rightarrow \left[\begin{array}{} x+\frac{1}{2}=0\\ \frac{2}{3}-2x=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} x=\frac{-1}{2}\\ x=\frac{1}{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm S={\(\frac{-1}{2};\frac{1}{3}\)}
Câu 2:
\(\Rightarrow \left[\begin{array}{} 3x-10=0\\ 5-\frac{1}{2}x=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} x-=\frac{10}{3}\\ x=10 \end{array} \right.\)
Vậy phương trình có tập nghiệm S={\(10;\frac{10}{3}\)}
Câu 3:
\(\Leftrightarrow \frac{1}{3}x=\frac{65}{4}-\frac{53}{4}\)
\( \Leftrightarrow \frac{1}{3}x=\frac{12}{4}\)
\(\Leftrightarrow x=9\)
Vậy phương trình có tập nghiệm S={9}
Câu 4:
\(\Leftrightarrow \frac{2}{3}x=\frac{2}{3}\)
\(\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm S={1}
Câu 5:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x(x+1)}=\frac{2010}{2011}\)
\(\Leftrightarrow 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)
\(\Leftrightarrow 1-\frac{1}{x+1}=\frac{2010}{2011}\)
\(\Leftrightarrow \frac{x}{x+1}=\frac{2010}{2011}\)
\(\Rightarrow 2010x+2010=2011x\)
\(\Leftrightarrow x=2010\)
Vậy phương trình có tập nghiệm S={2010}
cảm ơn bạn Hoàng Bình Bảo nha nhưng mà đây là toán lớp 6 mà bạn
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\) - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\)
\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)
( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\)
\(\dfrac{41}{16}\) - \(x\) = \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{41}{16}\) - \(\dfrac{5}{2}\)
\(x\) = \(\dfrac{1}{16}\)
2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\))
\(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)
- \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)+ \(\dfrac{1}{15}\)) - \(x\)
- \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)
\(x\) = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{5}{6}\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{55}\)
\(\dfrac{A}{2}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{110}=\)
\(=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{10x11}=\)
\(=\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+\dfrac{5-4}{4x5}+...+\dfrac{11-10}{10x11}=\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{10}-\dfrac{1}{11}=\)
\(=\dfrac{1}{2}-\dfrac{1}{11}=\dfrac{9}{22}\Rightarrow A=\dfrac{9}{11}\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{55}\)
\(\dfrac{A}{2}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{110}=\)
\(=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{10x11}=\)
\(=\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+\dfrac{5-4}{4x5}+...+\dfrac{11-10}{10x11}=\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{10}-\dfrac{1}{11}=\)
\(=\dfrac{1}{2}-\dfrac{1}{11}=\dfrac{9}{22}\Rightarrow A=\dfrac{9}{11}\)