K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\)

=>\(S=1+\left(\dfrac{1}{3}\right)+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^7\)

=>\(3S=3+1+\dfrac{1}{3}+...+\left(\dfrac{1}{3}\right)^6\)

=>\(3S-S=3+1+\dfrac{1}{3}+...+\left(\dfrac{1}{3}\right)^6-1-\dfrac{1}{3}-...-\left(\dfrac{1}{3}\right)^7\)

=>\(2S=3-\left(\dfrac{1}{3}\right)^7=3-\dfrac{1}{3^7}=\dfrac{3^8-1}{3^7}\)

=>\(S=\dfrac{3^8-1}{2\cdot3^7}\)

31 tháng 5 2024

256

 

18 tháng 8 2018

\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(3S=3+1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3S-S=\left(3+1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2S=3-\frac{1}{3^7}\)

\(S=\frac{3-\frac{1}{3^7}}{2}\)

18 tháng 8 2018

S= 1+ \(\frac{1}{3}\)\(\frac{1}{9}\)+...+ \(\frac{1}{729}\)\(\frac{1}{2187}\).

=> S= 1+ \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\).

=>3S= 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\).

=> 3S- S=( 3+ 1+ \(\frac{1}{3}\)+...+ \(\frac{1}{3^5}\)\(\frac{1}{3^6}\))-( 1+ \(\frac{1}{3}\)\(\frac{1}{3^2}\)+...+ \(\frac{1}{3^6}\)\(\frac{1}{3^7}\)).

=> 2S= 3- \(\frac{1}{3^7}\).

=> 2S= 3- \(\frac{1}{2187}\).

=> 2S= \(\frac{6560}{2187}\).

=> S= \(\frac{6560}{2187}\): 2.

=> S= \(\frac{3280}{2187}\).

Vậy S= \(\frac{3280}{2187}\).

\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)

\(3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}\)

Lấy 3A - A ta được :

\(2A=1-\dfrac{1}{6561}=\dfrac{6560}{6561}\Leftrightarrow A=\dfrac{6560}{6561}:2\)

\(\Leftrightarrow A=\dfrac{6560}{6561}.\dfrac{1}{2}=\dfrac{3280}{6561}\)

26 tháng 7 2018

\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)

\(\Rightarrow\)\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)

\(\Rightarrow\)\(3S-S=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(\Rightarrow\)\(2S=1-\frac{1}{3^7}\)

\(\Rightarrow\)\(S=\frac{1-\frac{1}{3^7}}{2}\)

26 tháng 7 2018

\(S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3S=1+\frac{1}{3}+...+\frac{1}{3^6}\)

\(3S-S=\left(1+\frac{1}{3}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)

\(2S=1-\frac{1}{3^7}\)

\(S=\frac{1-\frac{1}{3^7}}{2}\)

10 tháng 7 2015

S = 1/3+1/9+1/27+1/81+1/243+1/729+1/2187 ( 1 ) 
Nhân S với 3. Ta có: 
S x 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 ( 2 ) 
Trừ ( 2 ) với ( 1 ) ta có: 
S x 3 - S = 1 - 1/ 2187 
2S = 2186/ 2187 
S = 2186/ 2187 : 2 
S = 1093/ 2187 

13 tháng 7 2016

P = 78 × 31 + 78 × 24 + 78 × 17 + 22 × 72

P = 78 × (31 + 24 + 17) + 22 × 72

P = 78 × 72 + 22 × 72

P = 72 × (78 + 22)

P = 72 × 100

P = 7200

S = 1 + 1/3 + 1/9 + 1/27 + ... + 1/2187

3S = 3 + 1 + 1/3 + 1/9 + ... + 1/729

3S - S = (3 + 1 + 1/3 + 1/9 + ... + 1/729) - (1 + 1/3 + 1/9 + 1/27 + ... + 1/2187)

2S = 3 - 1/2187

2S = 6560/2187

S = 6560/2187 : 2

S = 6560/2187 × 1/2

S = 3280/2187

13 tháng 7 2016

cảm ơn bạn 

30 tháng 3 2019

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}\)

\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)

\(3A-A=\left[1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right]-\left[\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right]\)

\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)

\(A=\frac{6560}{6561}:2\)

\(A=\frac{3280}{6561}\)

Vậy : ...

9 tháng 7 2023

\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{2187}+\dfrac{1}{6561}\)

\(3B=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...+\dfrac{1}{6561}\right)\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}+\dfrac{1}{2187}\)

\(3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{2187}\right)-\left(\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{6561}\right)\)

\(2B=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{6561}\right)\)

\(2B=0+0+...+1-\dfrac{1}{6561}\)

\(2B=1-\dfrac{1}{6561}\)

\(B=\left(1-\dfrac{1}{6561}\right):2\)

\(B=\dfrac{6560}{6561}:2\)

\(B=\dfrac{3280}{6561}\)

9 tháng 7 2023

{3280}{6561}

27 tháng 8 2020

Bài làm:

Ta có: \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}+\frac{1}{6561}=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}+\frac{1}{3^8}\)

=> \(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}+\frac{1}{3^7}\) 

=> \(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)

<=> \(2A=1-\frac{1}{3^8}=\frac{3^8-1}{3^8}\)

=> \(A=\frac{3^8-1}{3^8.2}\)

27 tháng 8 2020

                          Bài làm :

Ta có :

\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)

\(\Rightarrow3\times A=\frac{1\times3}{3}+\frac{1\times3}{9}+\frac{1\times3}{27}+...+\frac{1\times3}{6561}\)

\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}\)

\(3\times A=1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\left(\frac{1}{6561}-\frac{1}{6561}\right)\)

\(3\times A=1+\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}+\frac{1}{2187}+\frac{1}{6561}\right)-\frac{1}{6561}\)

\(3\times A=1+A-\frac{1}{6561}\)

\(\Rightarrow2\times A=1-\frac{1}{6561}\)( Trừ bỏ A ở cả 2 vế )

\(2\times A=\frac{6560}{6561}\)

\(A=\frac{6560}{6561}\div2=\frac{3280}{6561}\)

Vậy A=3280/6561

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

17 tháng 4 2022

= 1 x 27/3x27 + 1x9/9x9 + 1x3 / 27 x 3 + 1/81

=27/81 + 9/81 + 3/81 + 1/81

= 40/81

17 tháng 4 2022

cách tính nữa bạn