K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2024

P = 3/2 * 2^2+1/2^2 *... * 2^200+1/2^200

Mà 2^2+1/2^2 < 2^2+1-2/2^2-2 = 2^2-1/2^2-2 = 2^2-1/2

2^3+1/2^3 < 2^3+1-2/2^3-2 = 2^3-1/2^3-2 = 2^3-1/2(2^2-1)

...

2^200+1/2^3 < 2^100+1-2/2^100-2 = 2^100-1/2^100-2 = 2^100-1/2(2^199-1)

=> P < 3/2 * 2^2-1/2 * 2^3/2(2^2-1)*...* 2^200-1/2(2^199-1)

=3/2 * 1/2 * 1/2 * 1/2 ...* 1/2 (199 thừa số 1/2) * (2^200-1)

=3/2 * 2^200-1/2^199

= 3 * 2^200-1/2^200

= 3* (1- 1/2^200) < 3*1 = 3

30 tháng 4 2017

\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)

\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4E=3-\frac{203}{3^{100}}< 3\)

\(\Rightarrow4E< 3\)

\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)

30 tháng 4 2017

Bài 1:

Ta có: \(3+3^2+3^3+...+3^{100}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^5.120+...+3^{96}.120\)

\(=120.\left(1+3^5+.....+3^{96}\right)\)

\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

11 tháng 8 2015

  A=1+4+42+...+499

4A=4+42+43+...+4100

4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)

 3A=4100-1

Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)

nhớ tích đúng nhe!!

 

11 tháng 8 2015

A=1+4+42+...+499

=>4A=4+42+43+...+4100

=>4A-A=(4+42+43+...+4100)-(1+4+42+...+499)=4100-1<4100

=>3A<4100

=>3A<B

=>A<B/3

28 tháng 6 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                       \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                         \(< 1-\frac{1}{100}< 1\)

=> đpcm

28 tháng 6 2016

giúp mình với nhé các bạn !

23 tháng 10 2019

Bài này lằng nhằng quá. Thôi kệ làm thử phát :>

(1)Ta có:

\(\frac{9}{5}=1+\frac{4}{5}=\frac{1}{2}+\frac{1}{2}+\frac{4}{5}\)

Vì \(\frac{1}{2}>\frac{1}{5};\frac{1}{3}>\frac{1}{5};...;\frac{1}{5}=\frac{1}{5}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}>\frac{1}{5}.4=\frac{4}{5}\)

Vì \(\frac{1}{6}>\frac{1}{10};\frac{1}{7}>\frac{1}{10};...;\frac{1}{10}=\frac{1}{10}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}>\frac{1}{10}.5=\frac{1}{2}\)

\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};...;\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}.10=\frac{1}{2}\)

Từ trên \(\Rightarrow\frac{9}{5}< A\)

(2)Ta có:

\(\frac{25}{6}=4+\frac{1}{6}=3+\frac{1}{2}+\frac{1}{2}+\frac{1}{6}\)

Có được \(\frac{1}{2}=\frac{1}{2}\)

Vì \(\frac{1}{3}=\frac{1}{3};\frac{1}{4}< \frac{1}{3};..\frac{1}{11}< \frac{1}{3}\)

\(\Rightarrow\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}< \frac{1}{3}.9=3\)

Vì \(\frac{1}{12}=\frac{1}{12};\frac{1}{13}< \frac{1}{12}\)

\(\Rightarrow\frac{1}{12}+\frac{1}{13}< \frac{1}{12}.2=\frac{1}{6}\)

Vì \(\frac{1}{14}=\frac{1}{14};\frac{1}{15}< \frac{1}{14};...\frac{1}{20}< \frac{1}{14}\)

\(\Rightarrow\frac{1}{14}+\frac{1}{15}+...+\frac{1}{20}< \frac{1}{14}.7=\frac{1}{2}\)

Từ trên \(\Rightarrow A< \frac{25}{6}\)

Từ (1) và (2)

\(\Rightarrowđpcm\)

23 tháng 10 2019

Bạn j ở trên ơi? Bạn làm vừa dài vừa khó hiểu vậy thì bạn kia làm sao mà hiểu được. Ngay cả mị còn ko hiểu. Bài của bạn nhìn sai bét rồi còn gì. Làm thế chỉ mỏi tay mà thôi. Còn đây là cách của mị

Bài này họ không bảo là tính nhanh lên bạn cứ tính tổng cộng tất cả rồi so sánh và kết luận ra ý. Mà mị cũng không chắc nữa. Nhưng bạn cứ làm theo mị ấy bài kia làm mỏi tay lắm. Làm thì phải ngắn chứ.

Dark horse cute thông minh

Mị lớp 10 nên học qua rồi

vào câu hỏi tương tự nha bạn! VD: mik

27 tháng 1 2016

khó quá vì em đang là hs lớp 5

18 tháng 7 2017

 1+1/22+1/32+...+1/100​2​ <1+1-1/2+1/2-1/3+...+1/99-1/100=1-1/100<2 (dpcm)

k cho mk nha : thắc mắc liên hệ mk giúp cho.

18 tháng 7 2017

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\) 

           \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ................

         \(\frac{1}{100^2}< \frac{1}{99.100}\)

Nên : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{100}\)

<=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2-\frac{1}{100}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\) (đpcm)