Tìm tất cả các số x, y, z nguyên dương thỏa mãn x + 2xy + 3xyz = 47.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
2) Ta có:
xy2 + 2xy -243y +x = 0
x( y2 + 2y + 1) -243y = 0
x(y+1)2 = 243y
x = 243y(y+1)2
Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1 243 chia hết (y+1)2
(y+1)2 thuộc {9; 81}
y+1 thuộc {3; -3; 9; -9}
y thuộc {2; -4; 8; -10}
x thuộc {54; -108; 24; -30}
Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)
a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z
⇒⇒ 3z ≥≥ xyz
⇒⇒ 3 ≥≥ xy
Vì xy nguyên dương nên xy = 1 hoặc xy = 2
+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương
+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.
Vậy...
b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)
* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)
* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)
Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.
chúc bạn hok tốt
a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)
Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)
=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)
+) Trường hợp 1 :
z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20
Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))
x - 4 | 20 | 10 | 5 | 4 | 2 | 1 |
y - 4 | 1 | 2 | 4 | 5 | 10 | 20 |
x | 24 | 14 | 9 | 8 | 6 | 5 |
y | 5 | 6 | 8 | 9 | 14 | 24 |
Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)
Xét tiếp trường hợp z = 2,z = 3 nữa nhé
b) Tương tự
xy+yz+xz=3xyz
<=> xy+yz+xz/xyz = 3
<=> 1/x + 1/y + 1/z = 3
Do vai trò x ; y ; z như nhau , ko mất tính tổng quát , giả sử
\(x\ge y\ge z\) . Khi đó , ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3.\frac{1}{x}\)
\(\Rightarrow3\le3.\frac{1}{x}\)
\(\Rightarrow1\le\frac{1}{x}\)
\(\Rightarrow x\le1\)
Mà x nguyên dương nên x = 1
Làm tương tự như vậy , ta có : y = 1 ; z = 1
Vậy ....
Sai rồi bạn , nếu làm như bạn , phải giả sử
z \(\ge y\ge x\)chứ
:v
Ta có: 2x2 + 2xy - x + y = 66
<=> (x + y)2 + x2 - y2 - (x - y) = 66
<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1 + x - y) = 65
<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)
Lập bảng:
x + y - 1 | 1 | 5 | 13 | 65 |
2x + 1 | 65 | 13 | 5 | 1 |
x | 32 | 6 | 2 | 0 |
y | -30 (ktm) | 0 | 12 | 66 |
Vậy ...
\(x+2xy+3xyz=47\)
\(\Leftrightarrow x\left(1+2y+3yz\right)=47\)
TH1: \(\left\{{}\begin{matrix}x=1\\1+2y+3yz=47\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\left(2+3z\right)=46\end{matrix}\right.\)
TH1.1: \(\left\{{}\begin{matrix}y=1\\2+3z=46\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=\dfrac{44}{3}\left(loại\right)\end{matrix}\right.\)
TH1.2: \(\left\{{}\begin{matrix}y=2\\2+3z=23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\z=7\end{matrix}\right.\) (nhận)
Vì \(z\inℕ^∗\) nên \(2+3z>2\). Do đó \(y< 23\) nên ta không xét các TH \(y=23,y=46\)
TH2: \(\left\{{}\begin{matrix}x=47\\y\left(2+3z\right)=1\end{matrix}\right.\). Khi đó \(y=2+3z=1\) \(\Rightarrow z=\dfrac{-1}{3}\), vô lý.
Vậy có một bộ số (x, y, z) duy nhất thỏa ycbt là \(\left(1,2,7\right)\)