2024 x ( a - 5) + 2023
sos
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài làm
Ta có:
\(\frac{2024}{2023^{2} + k} = \frac{2023^{2} + 2023}{2023^{2} + k} = 1 + \frac{2023 - k}{2023^{2} + k}\)
Vậy
\(A = \sum_{k = 1}^{2023} \left(\right. 1 + \frac{2023 - k}{2023^{2} + k} \left.\right) = 2023 + \sum_{k = 1}^{2023} \frac{2023 - k}{2023^{2} + k}\)
Vì \(\frac{2023 - k}{2023^{2} + k} > 0\) khi \(k < 2023\), và bằng 0 khi \(k = 2023\), nên
\(2023 < A < 2024\)
Suy ra A ko phải là số tự nhiên
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
a) \(2023^{2024}\) và \(2023^{2023}\)
vì 2024 > 2023 nên 20232024 > 20232023
Vậy 20232024 > 20232023
b) \(17^{2024}\) và \(18^{2024}\)
vì 17 < 18 nên 172024 < 18 2024
Vậy 172024 < 182024
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
đề bài thiếu dấu bằng và kết quả sau đó bạn ơi