tính 1^2-2^2+3^2-4^2+....-204^2+205^2 toán 8
mong các bạn giải hộ
!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)Đặt \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\frac{202}{3}+...+\frac{1}{204}}=\frac{B}{C}\)
Biến đổi C:
\(C=\left(\frac{204}{1}+1\right)+\left(\frac{203}{2}+1\right)+\left(\frac{202}{3}+1\right)+...+\left(\frac{1}{204}+1\right)-204\)
\(=205+\frac{205}{2}+\frac{205}{3}+..+\frac{205}{204}+\frac{205}{205}-205\)
\(=205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}}{205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)}=\frac{1}{205}\)
A=12/1.2 .22/2.3 .32/3.4 .42/4.5
=1/2. 2.2/2.3 .3.3/3.4 .4.4/4.5
=1/2.2/3.3.4.4./5
=1/5
\(2A=\frac{4}{3}+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}.\)
\(A=2A-A=\frac{4}{3}-\frac{2}{96}=\frac{63}{48}\)
mk từng làm dạng này rồi chỉ khác 1 chút thôi
C = 1 + 3 + 3^2 +...+3^10 +3^11 chia hết cho 13
=( 1+3+3^2) + ( 3^3 + 3^4 + 3^5) + ....+(3^9 + 3^10 + 3^11)
=(1+3 +9) + 3^3+(1+3+3^2) + ........+3^9 +(1+3+3^2)
=13 + 3^3 . 13 +....+ 3^9 . 13
=13. (1+3^3+....+3^9) chia hết cho 13
=>C chia hết cho 13
cứ theo cách đấy mà làm
a) S=1 + 2 + 2^2 + 2^3 +...+ 2^63
2S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64
S=2S-S=(2 + 2^2 + 2^3 + 6^4 +...+ 2^64)-(1 + 2 + 2^2 + 2^3 +...+ 2^63)
S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64 - 1 - 2 - 2^2 - 2^3 -...- 2^63
S=2^64 - 1
S=1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+10)
S=1/(2*3/2)+1/(3*4/2)+1/(4*5/2)+...+1/(10*11/2)
S=2(1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)
S=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11)
S=2(1/2-1/11)
S=2*9/22
S=9/11
nho k cho minh voi nha