K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x=99 nên x+1=100

A=x^5-x^4(x+1)+x^3(x+1)-x^2(x+1)+x(x+1)-9

=x^5-x^5-x^4+x^4+...+x^2+x-9

=x-9

=90

22 tháng 8 2017

Ta có:P=x3+y3+2xy=(x+y)33xy(x+y)+2xy=2013601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy

Đặt S=xy=x(201x)S=xy=x(201−x)

Dễ có:1x2001≤x≤200

S=200(x1)(x200)0Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200

Không mất tính TQ giả sử xyx100x≤y⇒x≤100

S=100.101...

28 tháng 8 2014

x = 99 suy ra 100 = x +1

A= x^5 - (x + 1)x^4 + (x + 1)x^3 - (x+1)x^2 + (x +1)x - 9

A= x^5 - x^5 - x^4 + x^4 +x^3 - x^3 -x^2 +x^2 + x - 9

A= x - 9 = 99 - 9 = 90

8 tháng 8 2019

x=99 suy ra 100 = x+1

A= x^(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-9

A=x^5(x^5-x^4+x^4+x^3-x^2_x^2_9

A=x-9=99-9=90

A-90

15 tháng 7 2015

x =99 => 100 = x + 1 thay vào ta có 

\(x^5-\left(x+1\right)x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right)x-9=x^5-x^5-x^4+...+x^2+x-9\)

= x - 9

= 99 -9 

= 90

22 tháng 8 2017

Ta có:P=x3+y3+2xy=(x+y)33xy(x+y)+2xy=2013601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy

Đặt S=xy=x(201x)S=xy=x(201−x)

Dễ có:1x2001≤x≤200

S=200(x1)(x200)0Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200

Không mất tính TQ giả sử xyx100x≤y⇒x≤100

S=100.101...

6 tháng 12 2020

Ta có x = 99

=> x + 1 = 100

Khi đó A = x5 - 100x4 + 100x3 - 100x2 + 100x - 9

= x5 - (x + 1)x4 + (x + 1)x3 - (x + 1)x2 + (x + 1)x - 9

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 9

= x - 9 

Thay x = 99 vào A 

=> A = x - 9 = 99 - 9 = 90

Vậy A = 90

6 tháng 12 2020

Ta có : \(x=99\Rightarrow100=x+1\)

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)

\(=x-9\)hay \(99-9=90\)

Vậy \(A=90\)

23 tháng 7 2019

a) Vì\(x=99\Rightarrow x+1=100\)

Thay x+1=100 vào biểu thức A ta được :

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)

\(=x+9\)

\(=99+9\)

\(=108\)

b) Tương tự

23 tháng 7 2019

\(A=x^5-100x^4+100x^3-100x^2+100x-9\)

\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)

\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)

\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)

\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)

\(\Rightarrow A=0-0+0+01-9=-9\)

NV
2 tháng 9

Do x=99 nên \(x-99=0\)

Ta có:

\(P=x^{100}-100x^{99}+100x^{98}-100x^{97}+\cdots+100x^2-100x+2124\)

\(=\left(x^{100}-99x^{99}\right)-\left(x^{99}-99x^{98}\right)+\cdots+\left(x^2-99x\right)-\left(x-99\right)+2025\)

\(=x^{99}\left(x-99\right)-x^{98}\left(x-99\right)+\cdots+x\left(x-99\right)-\left(x-99\right)+2025\)

\(=x^{99}.0-x^{98}.0+\cdots+x.0-0+2025\)

\(=0+0+\cdots+0+2025=2025\)

3 tháng 9

Đề bài:

\(P = x^{100} - 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots - 100 x + 2124\)

với \(x = 99\). Tính giá trị \(P\).


Bước 1: Phân tích biểu thức

Biểu thức gồm:

  • \(x^{100}\)
  • Các số hạng có dạng \(\pm 100 x^{k}\) với \(k = 99 , 98 , 97 , . . . , 1\)
  • Hằng số \(2124\)

Nhìn kỹ, các số hạng từ \(x^{99}\) đến \(x\) đều có hệ số \(- 100\) hoặc \(+ 100\) xen kẽ dấu âm dương.


Bước 2: Viết lại biểu thức rõ ràng hơn

Ta có thể tách biểu thức như sau:

\(P = x^{100} + \sum_{k = 99 , 97 , 95 , . . .}^{1} 100 x^{k} - \sum_{k = 99 , 98 , 96 , 94 , . . .}^{2} 100 x^{k} + 2124\)

Nhưng câu hỏi có dấu trừ \(- 100 x^{99} + 100 x^{98} - 100 x^{97} + \hdots\), tức dấu thay đổi từng số hạng.

Cụ thể:

  • Số hạng thứ 1: \(x^{100}\)
  • Số hạng thứ 2: \(- 100 x^{99}\)
  • Số hạng thứ 3: \(+ 100 x^{98}\)
  • Số hạng thứ 4: \(- 100 x^{97}\)
  • ... cứ thế tiếp tục xen kẽ dấu âm dương cho đến \(- 100 x\)
  • Cuối cùng cộng \(2124\)

Bước 3: Tách tổng thành hai phần:

Gọi

\(S = \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} 100 x^{100 - k}\)

Ta có:

\(P = x^{100} + S + 2124\)


Bước 4: Viết \(S\) như sau:

\(S = 100 \sum_{k = 1}^{99} \left(\right. - 1 \left.\right)^{k} x^{100 - k} = 100 \sum_{m = 1}^{99} \left(\right. - 1 \left.\right)^{m} x^{100 - m}\)

Thay đổi chỉ số:
Gọi \(j = 100 - m\), khi \(m = 1 \Rightarrow j = 99\), khi \(m = 99 \Rightarrow j = 1\)

Vậy:

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{100 - j} x^{j}\)

Nhưng \(\left(\right. - 1 \left.\right)^{100 - j} = \left(\right. - 1 \left.\right)^{100} \cdot \left(\right. - 1 \left.\right)^{- j} = 1 \cdot \left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\) (vì \(\left(\right. - 1 \left.\right)^{- j} = \left(\right. - 1 \left.\right)^{j}\)).

Nên:

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} x^{j}\)


Bước 5: Thay \(x = 99\):

\(S = 100 \sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j}\)


Bước 6: Tính tổng:

\(\sum_{j = 1}^{99} \left(\right. - 1 \left.\right)^{j} 99^{j} = - 99 + 99^{2} - 99^{3} + 99^{4} - \hdots + \left(\right. - 1 \left.\right)^{99} 99^{99}\)


Bước 7: Nhận xét

Đây là tổng của cấp số nhân với số hạng đầu:

\(a_{1} = - 99\)

Tỷ số công:

\(r = - 99\)

Số hạng tổng:

\(n = 99\)

Tổng của cấp số nhân:

\(S_{n} = a_{1} \frac{1 - r^{n}}{1 - r} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 - \left(\right. - 99 \left.\right)} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{1 + 99} = \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100}\)


Bước 8: Tính \(S\):

\(S = 100 \times S_{n} = 100 \times \left(\right. \left(\right. - 99 \left.\right) \times \frac{1 - \left(\right. - 99 \left.\right)^{99}}{100} \left.\right) = - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right)\)


Bước 9: Tính \(P\):

\(P = x^{100} + S + 2124 = 99^{100} - 99 \left(\right. 1 - \left(\right. - 99 \left.\right)^{99} \left.\right) + 2124\)


Bước 10: Chú ý về dấu lũy thừa \(\left(\right. - 99 \left.\right)^{99}\):

\(\left(\right. - 99 \left.\right)^{99} = - \left(\right. 99 \left.\right)^{99}\)

Vậy:

\(P = 99^{100} - 99 \left(\right. 1 - \left(\right. - \left(\right. 99 \left.\right)^{99} \left.\right) \left.\right) + 2124 = 99^{100} - 99 \left(\right. 1 + 99^{99} \left.\right) + 2124\)


Bước 11: Phân tích thêm

\(P = 99^{100} - 99 - 99 \times 99^{99} + 2124 = 99^{100} - 99 \times 99^{99} - 99 + 2124\)


Bước 12: Nhận xét

Lưu ý:

\(99^{100} = 99 \times 99^{99}\)

Nên:

\(P = \left(\right. 99 \times 99^{99} \left.\right) - 99 \times 99^{99} - 99 + 2124 = 0 - 99 + 2124 = 2124 - 99 = \boxed{2025}\)


Kết luận:

\(\boxed{P = 2025}\)