K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MDBO có \(\widehat{DMO}+\widehat{DBO}=90^0+90^0=180^0\)

nên MDBO là tứ giác nội tiếp

b: Xét (O) có

CA,CM là các tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc MOA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

=>\(OM^2=AC\cdot BD\)

c: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

Xét ΔMAB vuông tại M có \(sinBAM=\dfrac{BM}{BA}\)

=>\(\dfrac{BM}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(BM=R\sqrt{3}\)

=>\(AM=\sqrt{\left(2R\right)^2-\left(R\sqrt{3}\right)^2}=R\)

ΔMAB vuông tại M

=>\(S_{MAB}=\dfrac{1}{2}\cdot MA\cdot MB=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)

25 tháng 3 2022

a)

b)

Nếu còn tiếp tục cop mạng mà thiếu Tham khảo thì sẽ bảo admin khoá acc

a) Xét (O) có 

NA là tiếp tuyến có A là tiếp điểm(gt)

NE là tiếp tuyến có E là tiếp điểm(gt)

Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{AOE}=2\cdot\widehat{EON}\)

Xét (O) có 

ME là tiếp tuyến có E là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)

Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)

hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)

\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)

hay \(\widehat{MON}=90^0\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:

\(ME\cdot NE=OE^2\)

mà OE=R

nên \(ME\cdot NE=R^2\)(đpcm)

Bài 4: Cho nửa đường tròn (O), đường kính AB = 2R. Từ A và B kẻ 2 tiếp tuyến Ax và By. Từ M bất kì trên nửa đường tròn kẻ tiếp tuyến thứ 3 với nửa đường tròn đó, tiếp tuyến này cắt Ax ở C cắt By ở D.a)     Chứng minh: CD = AC + BDb)    Chứng minh:  vuôngc)     AM cắt OC ở E, BM cắt OD ở F. Chứng minh EF = Rd)    Chứng minh: đường tròn đường kính CD nhận AB là tiếp tuyếne)    ...
Đọc tiếp

Bài 4: Cho nửa đường tròn (O), đường kính AB = 2R. Từ A và B kẻ 2 tiếp tuyến Ax và By. Từ M bất kì trên nửa đường tròn kẻ tiếp tuyến thứ 3 với nửa đường tròn đó, tiếp tuyến này cắt Ax ở C cắt By ở D.

a)     Chứng minh: CD = AC + BD

b)    Chứng minh:  vuông

c)     AM cắt OC ở E, BM cắt OD ở F. Chứng minh EF = R

d)    Chứng minh: đường tròn đường kính CD nhận AB là tiếp tuyến

e)     OM cắt EF ở I. Khi M di động trên cung AB thì I chạy trên đường nào?

f)      Tìm vị trị điểm M để diện tích ACDB nhỏ nhất.

Bài 5: Cho tam giác ABC vuông cân ở C , E là điểm bất kì trên BC. Qua B kẻ tia vuông góc với tia AE tại H và cắt tia AC tại K.

a)     Chứng minh: 4 điểm B, H, C, A cùng thuộc một đường tròn

b)    Chứng minh: KC. KA = KH. KB

c)     Khi E chuyển động trên BC thì tổng (BE. BC + AE. AH) có giá trị không đổi

Bài 6: Cho nửa đường tròn (O), đường kính AB. Hai điểm CD thuộc nửa đường tròn sao cho góc COD = 900 (C  thuộc cung AD). M là 1 điểm bất kỳ trên nửa đường tròn sao cho AC = CM các dây AM, BM cắt OC, OD tại E, F.

a)     Tứ giác OEMF là hình gì?

b)    Kẻ tiếp tuyến với nửa đường tròn tại M cắt tia OC, OD tại I, K. Chứng minh tia IA là tia tiếp tuyến của đường tròn (O)

2
25 tháng 12 2023

b) bài 4 là chứng minh tam giác COD vuông

25 tháng 12 2023

Bài 5:

a: Xét tứ giác BHCA có \(\widehat{BHA}=\widehat{BCA}=90^0\)

nên BHCA là tứ giác nội tiếp

=>B,H,C,A cùng thuộc một đường tròn

b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có

\(\widehat{HKA}\) chung

Do đó: ΔKHA đồng dạng với ΔKCB

=>\(\dfrac{KH}{KC}=\dfrac{KA}{KB}\)

=>\(KH\cdot KB=KA\cdot KC\)

c: Gọi giao điểm của KE với BA là M

Xét ΔKBA có

AH,BC là các đường cao

AH cắt BC tại E

Do đó: E là trực tâm của ΔKBA

=>KE\(\perp\)BA tại M

Xét ΔBME vuông tại M và ΔBCA vuông tại C có

\(\widehat{MBE}\) chung

Do đó: ΔBME đồng dạng với ΔBCA

=>\(\dfrac{BM}{BC}=\dfrac{BE}{BA}\)

=>\(BM\cdot BA=BC\cdot BE\)

Xét ΔAME vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAE}\) chung

Do đó: ΔAME đồng dạng với ΔAHB

=>\(\dfrac{AM}{HA}=\dfrac{AE}{AB}\)

=>\(AH\cdot AE=AM\cdot AB\)

\(BC\cdot BE+AH\cdot AE=BM\cdot BA+AM\cdot AB=AB^2\) không đổi

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: góc BOM=2*60=120 độ

=>góc BDM=60 độ

=>ΔBMD đều

\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

12 tháng 5 2023

giúp em câu b,c với ạ 

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Bạn có thể tham khảo bài tương tự ở đây:

BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn (... - Hoc24

 CM góc COD = 90 độ 

Theo tính chất 2 tiếp tuyến cắt nhau 

Ta có : OC là phân giác góc AOM

=> góc COM = 1/2 góc AOM 

OD là phân giác góc BOM 

=> góc DOM = 1/2 góc BOM

=> góc COD = góc COM + góc DOM = 1/2 ( góc AOM + góc BOM ) = 1/2 góc AOB = 1/2 x 180 độ = 90 độ