Tìm GTNN của:
1, y=x+2/x^2, x>0
2, y=(x+1)^2+(x^2/x+1 + 2)^2,x khác -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxki dạng phân thức
\(A\ge\frac{\left(1+\frac{2}{x}+1+\frac{2}{y}\right)^2}{1+1}=\frac{\left[2+2\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\)
Theo BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
hay \(\frac{\left(2+\frac{8}{x+y}\right)^2}{2}=\frac{\left(10\right)^2}{2}=\frac{100}{2}=50\)
Vậy \(A\ge50\)khi \(x=y=\frac{1}{2}\)
Ta dễ dàng nhận thấy :
\(\left(\frac{x+1}{y}\right)^2\ge0\)
\(\left(\frac{y+1}{x}\right)^2\ge0\)
Cộng theo vế ta được :
\(\left(\frac{x+1}{y}\right)^2+\left(\frac{y+1}{x}\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(x=y=-1\)
Vậy \(Min_S=0\)khi \(x=y=-1\)
dcv_new : sai rồi nhé
\(S=x^2+\frac{1}{y^2}+\frac{2x}{y}+y^2+\frac{1}{x^2}+\frac{2y}{x}\)
\(\ge4+\frac{4}{x^2+y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(=5+4=9\)
Đẳng thức xảy ra tại x=y=\(\sqrt{2}\)
Phần này chug: áp dụng Cauchy có: \(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\left(\frac{a+b}{2}\right)^2=\frac{1}{4}\)
a) \(A=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{1}{xy}\ge\frac{1}{\frac{1}{4}}=4\)
b) Áp dụng BĐT Schwart có: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
c) đề câu này là \(x+\frac{1}{x}\)hay \(\frac{x+1}{x}\)vậy em?
1.
Áp dụng BĐT Cô-si:
$y=x+\frac{2}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{2}{x^2}\geq 3\sqrt[3]{\frac{x}{2}.\frac{x}{2}.\frac{2}{x^2}}=3\sqrt[3]{\frac{1}{2}}$
Vậy GTNN của $y$ là $3\sqrt[3]{\frac{1}{2}}$. Giá trị này đạt tại $\frac{x}{2}=\frac{2}{x^2}\Leftrightarrow x=\sqrt[3]{4}$
2.
\(y=(x+1)^2+(\frac{x^2}{x+1}+2)^2=(x+1)^2+(\frac{x^2+2x+2}{x+1})^2\\ =(x+1)^2+[\frac{(x+1)^2+1}{x+1}]^2=(x+1)^2+(x+1+\frac{1}{x+1})^2\)
Đặt $t=x+1$ thì, áp dụng BĐT Cô-si:
\(y=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\geq 2\sqrt{2t^2.\frac{1}{t^2}}+2=2\sqrt{2}+2\)
Vậy $y_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $2t^2=\frac{1}{t^2}\Leftrightarrow t=\pm \sqrt[4]{\frac{1}{2}}$
$\Leftrightarrow x=\pm \sqrt[4]{\frac{1}{2}}-1$