tìm các cạp số(x,y) sao cho :
lx-2013l+lx-2014l+ly-2016l+lx-2016l=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề (I): Cho 2 số thực a, b thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html
Quay trở lại giải bài toán ban đầu.
Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)
Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)
Thử lại thấy thoả mãn.
Vậy x = 2014, y = 2015.
A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l
= |x-2014| + |2017 - x| + |x-2015| + |2016-x| >= |x-2014+2017-x| + |x-2015+2016-x|
= 4.
Dấu "=" xảy ra <=> (x-2014)(2017-x) >=0 và (x-2015)(2016-x) >= 0
<=> \(\hept{\begin{cases}\orbr{\begin{cases}\hept{\begin{cases}x\ge2014\\x\le2017\end{cases}}\\\hept{\begin{cases}x\le2014\\x\ge2017\end{cases}\left(kxảyra\right)}\end{cases}}\\\orbr{\begin{cases}\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\\\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}\left(kxảyra\right)}\end{cases}}\end{cases}}\)
=> \(2015\le x\le2016\)
Vậy Min A = 4 khi \(2015\le x\le2016\).
A = | x - 2015 | + | x - 2016 |
= | x - 2015 | + | -( x - 2016 ) |
= | x - 2015 | + | 2016 - x |
≥ | x - 2015 + 2016 - x | = 1
Dấu "=" xảy ra <=> ( x - 2015 )( 2016 - x ) ≥ 0
=> 2015 ≤ x ≤ 2016
=> MinA = 1, đạt được khi 2015 ≤ x ≤ 2016
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
=>x-2=-x+2
=>x=2
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
=>2x+3=-5x+1
=>x=-2/7 (loại)
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
Lời giải:
Nếu $x\geq 2016$ thì:
$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=x-2013+x-2014+|y-2016|+x-2016$
Hay $3=3x-6043+|y-2016|\geq 3.2016-6043+|y-2016|=5+|y-2016|\geq 5$ (vô lý)
Nếu $2013\leq x< 2016$ thì:
$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=x-2013+|x-2014|+|y-2016|+2016-x$
Hay $3=3+|x-2014|+|y-2016|$
$\Rightarrow |x-2014|+|y-2016|=0$
Ta thấy: $|x-2014|\geq 0; |y-2016|\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì: $x-2014=y-2016=0$
$\Rightarrow x=2014; y=2016$ (thỏa mãn)
Nếu $x< 2013$ thì:
$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=2013-x+2014-x+|y-2016|+2016-x=6043-3x+|y-2016|> 6043-3.2013+|y-2016|=4+|y-2016|\geq 4$ (vô lý)
Vậy $x=2014, y=2016$