K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 5 2024

Lời giải:

Nếu $x\geq 2016$ thì:

$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=x-2013+x-2014+|y-2016|+x-2016$

Hay $3=3x-6043+|y-2016|\geq 3.2016-6043+|y-2016|=5+|y-2016|\geq 5$ (vô lý) 

Nếu $2013\leq x< 2016$ thì:

$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=x-2013+|x-2014|+|y-2016|+2016-x$

Hay $3=3+|x-2014|+|y-2016|$

$\Rightarrow |x-2014|+|y-2016|=0$

Ta thấy: $|x-2014|\geq 0; |y-2016|\geq 0$ với mọi $x,y$

Do đó để tổng của chúng bằng $0$ thì: $x-2014=y-2016=0$

$\Rightarrow x=2014; y=2016$ (thỏa mãn) 

Nếu $x< 2013$ thì:

$3=|x-2013|+|x-2014|+|y-2016|+|x-2016|=2013-x+2014-x+|y-2016|+2016-x=6043-3x+|y-2016|> 6043-3.2013+|y-2016|=4+|y-2016|\geq 4$ (vô lý) 

Vậy $x=2014, y=2016$

9 tháng 2 2019

Bổ đề (I): Cho 2 số thực ab thì |a| + |b| \(\ge\)|a+b|. Đẳng thức xảy ra khi ab \(\ge\)0. Bạn có thể tham khảo cách chứng minh tại đây nhé: https://olm.vn/hoi-dap/detail/211409388447.html

Quay trở lại giải bài toán ban đầu.

Áp dụng bổ đề (I) và các tính chất của giá trị tuyệt đối ta có:

\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)\(\ge\left|x-2013+2016-x\right|+0+0=\left|3\right|+0=3.\)

Theo đề bài, đẳng thức phải xảy ra, khi: \(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\x=2014\\y=2015\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2014\\y=2015\end{cases}.}}\)

Thử lại thấy thoả mãn.

Vậy x = 2014, y = 2015.

9 tháng 2 2019

\(\left(x;y\right)\in\left\{\left(2014;2015\right)\right\}\)

23 tháng 4 2017

GTNN bằng 0 với mọi x thuộc Z

25 tháng 3 2020

A = lx - 2014l + lx - 2015l + lx - 2016l + lx -2017l

 = |x-2014| + |2017 - x| + |x-2015| + |2016-x| >= |x-2014+2017-x| + |x-2015+2016-x|

= 4.

Dấu "=" xảy ra <=> (x-2014)(2017-x) >=0 và (x-2015)(2016-x) >= 0

<=> \(\hept{\begin{cases}\orbr{\begin{cases}\hept{\begin{cases}x\ge2014\\x\le2017\end{cases}}\\\hept{\begin{cases}x\le2014\\x\ge2017\end{cases}\left(kxảyra\right)}\end{cases}}\\\orbr{\begin{cases}\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\\\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}\left(kxảyra\right)}\end{cases}}\end{cases}}\)

=> \(2015\le x\le2016\)

Vậy Min A = 4 khi \(2015\le x\le2016\).

18 tháng 9 2021

bài này em tìm max, min hay x hả em

30 tháng 12 2020

A = | x - 2015 | + | x - 2016 |

= | x - 2015 | + | -( x - 2016 ) |

= | x - 2015 | + | 2016 - x |

≥ | x - 2015 + 2016 - x | = 1

Dấu "=" xảy ra <=> ( x - 2015 )( 2016 - x ) ≥ 0

=> 2015 ≤ x ≤ 2016

=> MinA = 1, đạt được khi 2015 ≤ x ≤ 2016

12 tháng 8 2016

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

  • Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

  • Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

  • Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

  • Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

12 tháng 8 2016

lần sau đăng ít thôi