Tìm a để đa thức P(x)=x^4-3x^3+5x^2+ax-a chia hết cho x-2
Cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
a: \(\Leftrightarrow3x^3-x^2+3x^2-x-6x+2+a-2⋮3x-1\)
=>a-2=0
hay a=2
b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)
=>-4a+28=0
hay a=7
\(P\left(x\right)⋮x-2\)
=>\(x^4-3x^3+5x^2+ax-a⋮x-2\)
=>\(x^4-2x^3-x^3+2x^2+3x^2-6x+\left(a+6\right)x-\left(2a+12\right)+2a+12-a⋮x-2\)
=>a+12=0
=>a=-12