Cho hình thang vuông tại A và D. Biết AB=9cm, CD=15cm, AC=17cm. Tính độ dài các cạnh bên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng PTG: \(AD=\sqrt{AC^2-AD^2}=\sqrt{17^2-15^2}=8\left(cm\right)\)
Kẻ đg cao BH
Do đó \(\widehat{BAD}=\widehat{ADH}=\widehat{DHB}=90^0\) nên ABHD là hcn
Do đó \(AB=DH=9\left(cm\right);AD=BH=8\left(cm\right)\)
\(\Rightarrow HC=CD-DH=17-9=8\left(cm\right)\)
Áp dụng PTG cho tg BHC vuông tại H
\(BC=\sqrt{BH^2+CH^2}=\sqrt{64+64}=8\sqrt{2}\left(cm\right)\)
Vậy độ dài các cạnh bên AD,BC là 8 cm và \(8\sqrt{2}\) cm
Theo đề là CD=15cm mà ở dòng 10 cậu có bị nhầm với AC sau khiến những câu dưới bị sai ạ
a, Xét △AHB vuông tại H có: BH2 + AH2 = AB2 (định lý Pytago) => 92 + AH2 = 152 => AH2 = 144 => AH = 12 (cm)
Ta có: BH + HC = BC => 9 + HC = 25 => HC = 16 (cm)
Xét △AHC vuông tại H có: HC2 + AH2 = AC2 (định lý Pytago) => 162 + 122 = AC2 => AC2 = 400 => AC = 20 (cm)
b, Xét △ABC có: AB2 + AC2 = 152 + 202 = 625 (cm)
BC2 = 252 = 625 (cm)
=> AB2 + AC2 = BC2
=> △ABC vuông tại A (định lý Pytago)
a) HC=BC-BH=25-9=16 (cm)
Xét \(\Delta\)BHA có:
AH2=AB2-BH2=152-92=144
\(AH=\sqrt{144}=12\left(cm\right)\)
Xét \(\Delta\)AHC có:
AC2=AH2+HC2=122+162=400
=> AC=20(cm)
b) AB2+AC2=152+202=625
BC2=252=625
=> BC2=AB2+AC2
=> \(\Delta\)ABC vuông tại A (đpcm)
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
a) ∆ADC vuông tại D
⇒ AC² = AD² + CD² (Pythagore)
⇒ AD² = AC² - CD²
= 17² - 15²
= 64
⇒ AD = 8 (cm)
Kẻ BE ⊥ CD
⇒ BE ⊥ AB
⇒ ∠ABE = ∠BED = ∠ADE = ∠BAD = 90⁰
⇒ ABED là hình chữ nhật
⇒ BE = AD = 8 (cm)
⇒ DE = AB = 9 (cm)
⇒ CE = CD - DE
= 15 - 9
= 6 (cm)
∆BEC vuông tại E
⇒ BC² = BE² + CE² (Pythagore)
= 8² + 6²
= 100
⇒ BC = 10 (cm)