Cho phương trình: 8x2– 4(m – 2)x + m(m – 4) = 0. Định m để phương trình có hai nghiệm x1 ; x2.
Tìm hệ thức giữa hai nghiệm độc lập với m, suy ra vị trí của các nghiệm đối với hai số – 1 và 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì pt sẽ là: x^2+4x-3=0
=>x=-2+căn 7 hoặc x=-2-căn 7
b: Δ=(2m-6)^2-4(m-4)
=4m^2-24m+36-4m+16
=4m^2-28m+52=(2m-7)^2+3>0
=>PT luôn có hai nghiệm pb
c: PT có hai nghiệm trái dấu
=>m-4<0
=>m<4
Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1 ≠ 0 và
∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24
Phương trình có hai x 1 ; x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0
Áp dụng định lý Vi – ét ta có x 1 + x 2 = 2 ( m + 4 ) ; x 1 . x 2 = m 2 – 8
Ta có:
A = x 1 + x 2 − 3 x 1 x 2
= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 = − 3 m 2 − 2 3 m − 32 3
= − 3 m − 1 3 2 + 97 3
Nhận thấy A ≤ 97 3 và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3 (TM)
Vậy giá trị lớn nhất của A là 97 3 khi m = 1 3
Đáp án: A
Trường hợp 1: m=10
Phương trình sẽ là -40x+6=0
hay x=3/20
=>m=10 sẽ thỏa mãn trường hợp a
Trường hợp 2: m<>10
\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)
\(=16m^2-4\left(m^2-14m+40\right)\)
\(=16m^2-4m^2+56m-160\)
\(=12m^2+56m-160\)
\(=4\left(3m^2+14m-40\right)\)
\(=4\left(3m^2-6m+20m-40\right)\)
\(=4\left(m-2\right)\left(3m+20\right)\)
a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0
=>m>=2 hoặc m<=-20/3
b: Để phương trình có hai nghiệm phân biệt đều dương thì
\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)
Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.
2: \(\text{Δ}=\left(m-4\right)^2-4\left(-m+3\right)\)
\(=m^2-8m+16+4m-12\)
\(=m^2-4m+4=\left(m-2\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x_1-x_2=2\\x_1+x_2=-m+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=6-m\\x_2=3x_1-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{6-m}{4}\\x_2=\dfrac{3\left(6-m\right)}{4}-2=\dfrac{18-3m-8}{4}=\dfrac{10-3m}{4}\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m+3\)
\(\Leftrightarrow\left(m-6\right)\left(3m-10\right)=16\left(-m+3\right)\)
\(\Leftrightarrow3m^2-30m-18m+60+16m-48=0\)
\(\Leftrightarrow3m^2-32m+12=0\)
\(\text{Δ}=\left(-32\right)^2-4\cdot3\cdot12=880>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{32-4\sqrt{55}}{6}=\dfrac{16-2\sqrt{55}}{3}\\x_2=\dfrac{16+2\sqrt{55}}{3}\end{matrix}\right.\)
a:Δ=(2m-2)^2-4(-m-3)
=4m^2-8m+4+4m+12
=4m^2-4m+16
=(2m-1)^2+15>=15>0
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì -m-3<0
=>m+3>0
=>m>-3
c: Để phương trình có hai nghiệm âm thì:
2m-2<0 và -m-3>0
=>m<1 và m<-3
=>m<-3
d: x1^2+x2^2=(x1+x2)^2-2x1x2
=(2m-2)^2-2(-m-3)
=4m^2-8m+4+2m+6
=4m^2-6m+10
=4(m^2-3/2m+5/2)
=4(m^2-2*m*3/4+9/16+31/16)
=4(m-3/4)^2+31/4>0 với mọi m