Biết x phần 27 = -5/3 , khi đó x bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\) => \(\dfrac{2x}{6}=\dfrac{y}{5}=\) \(\dfrac{4z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{2x}{6}\) = \(\dfrac{y}{5}\) = \(\dfrac{4z}{8}\)= \(\dfrac{2x-y+4z}{6-5+8}\) = \(\dfrac{27}{9}\) = 3
\(x\) = 3.6:2= 9
y=3.5 = 15
z = 3.8:4 = 6
Sửa đề: Tìm x là số nguyên
a) -27/3 < x < 12/4
⇒ -9 < x < 3
⇒ x ∈ {-8; -7; -6; ...; 1; 2}
b) -28/4 ≤ x ≤ -12/6
⇒ -7 ≤ x ≤ -2
⇒ x ∈{-7; -6; -5; -4; -3; -2}
Giới hạn đã cho hữu hạn khi \(\sqrt{ax+b}-3=0\) có nghiệm \(x=3\)
\(\Rightarrow\sqrt{3a+b}=3\Rightarrow3a+b=9\Rightarrow b=9-3a\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{ax+9-3a}-3}{3\left(9-x^2\right)}=\lim\limits_{x\rightarrow3}\dfrac{a\left(x-3\right)}{-3\left(x+3\right)\left(x-3\right)\left(\sqrt{ax+9-3a}+3\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{-a}{3\left(x+3\right)\left(\sqrt{ax+9-3a}+3\right)}=\dfrac{-a}{18.6}=\dfrac{1}{54}\Rightarrow a=-2\)
\(\Rightarrow b=15\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
Gọi T = (x – 1)(x – 2)(x + 4)(x + 5) – 27
= [(x – 1)(x + 4)].[(x – 2)(x + 5)] – 27
= ( x 2 + 3x – 4).( x 2 + 3x – 10) – 27
Đặt x 2 + 3x – 7 = t
Từ đó ta có T = (t – 3)(t + 3) – 27 = t 2 – 9 – 27 = t 2 – 36 = (t – 6)(t + 6)
Thay t = x 2 + 3x – 7 ta được
T = ( x 2 + 3x – 7 – 6)( x 2 + 3x – 7 + 6)
= ( x 2 + 3x – 13)( x 2 + 3x – 1) suy ra a = -13; b = -1 => a + b = -14
Đáp án cần chọn là: D
Bài 1:
Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)
Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)
\(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{7}=3\Rightarrow y=3.7=21\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15
thank trc ^~^
Lời giải:
$\frac{x}{27}=\frac{-5}{3}$
$x=27.\frac{-5}{3}=-45$
-45