K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 5 2024

\(f'\left(x\right)=-4x^3.\left[f\left(x\right)\right]^2\Rightarrow\dfrac{f'\left(x\right)}{\left[f\left(x\right)\right]^2}=-4x^3\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow-\dfrac{1}{f\left(x\right)}=\int-4x^3dx=-x^4+C\)

\(f\left(0\right)=1\Rightarrow-\dfrac{1}{f\left(0\right)}=0^4+C\Rightarrow C=-1\)

\(\Rightarrow-\dfrac{1}{f\left(x\right)}=-x^4-1\Rightarrow f\left(x\right)=\dfrac{1}{x^4+1}\)

\(\int\limits^3_0x^3.f\left(x\right)dx=\int\limits^3_0\dfrac{x^3}{x^4+1}dx\) (tích phân này rất đơn giản em tự tính hoặc bấm máy cũng được)

12 tháng 3 2021

- Một đệ tử mang đến cho ông một cây lạ nhập giống từ xứ Trung Hoa. Đấy là cây chuối, giống chuối tiêu. Và ngay tức thì nhà thơ say mê nó, ông bị những tàu lá dài và rộng kia quyến rũ…Trong tiếng Nhật, cây chuối là ba-sô…còn cái tên nào thích hợp cho ông lấy làm bút danh hơn là tên loài cây mà ông yêu mến.

- Đoạn trích thuyết minh về các bút danh của Ba-sô. Từ bút danh Mu-nê-phu-sa, bút danh Tô-sây đến bút danh Ba-sô, cái người đọc cần biết là ý nghĩa của các bút danh ấy. Vì vậy người viết đã sử dụng phương pháp nêu định nghĩa để thuyết minh. Nhờ phương pháp thuyết minh này mà các bút danh của Ba-sô được giải thích một cách sáng rõ.

28 tháng 10 2023

\(B=3+3^2+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(3B-B=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\)

=>\(2B=3^{101}-3\)

=>\(2B+3=3^{101}\)

=>\(3^n=3^{101}\)

=>n=101

28 tháng 10 2023

e chỉ cần cách giải thôi ạ e k cần đáp án đâu !

 

 

NV
16 tháng 3 2022

5.1

Do \(a\ge c\Rightarrow\left(a+1\right)^2\ge\left(c+1\right)^2\Rightarrow\dfrac{1}{\left(c+1\right)^2}\ge\dfrac{1}{\left(a+1\right)^2}\)

\(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\ge\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT Bunhiacopxki:

\(\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}=\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)

Tương tự:

\(\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}\ge\dfrac{1}{bc+1}\)

\(\dfrac{1}{\left(c+1\right)^2}+\dfrac{1}{\left(a+1\right)^2}\ge\dfrac{1}{ca+1}\)

Cộng vế:

\(P\ge\dfrac{1}{ab+1}+\dfrac{1}{bc+1}+\dfrac{1}{ca+1}\ge\dfrac{9}{ab+bc+ca+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)

NV
16 tháng 3 2022

5.2

Ta có:

\(\dfrac{1}{2a+3b+3c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)

Tương tự:

\(\dfrac{1}{3a+2b+3c}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{2}{c+a}\right)\)

\(\dfrac{1}{3a+3b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{16}\left(\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\right)=505\)

\(P_{max}=505\) khi \(a=b=c=\dfrac{3}{4040}\)

NV
16 tháng 3 2022

\(a>b\Rightarrow a-b>0\)

\(P=\dfrac{a^2+b^2-2ab+2ab+1}{a-b}=\dfrac{\left(a-b\right)^2+9}{a-b}=a-b+\dfrac{9}{a-b}\ge2\sqrt{\dfrac{9\left(a-b\right)}{a-b}}=6\)

\(P_{min}=6\) khi \(\left(a;b\right)=\left(4;1\right);\left(-1;-4\right)\)

NV
20 tháng 3 2022

3.2

\(\Delta'=\left(a+1\right)^2-2a=a^2+1>0;\forall a\Rightarrow\) pt luôn có 2 nghiệm pb với mọi a

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(a+1\right)\\x_1x_2=2a\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(x_1^2-2\left(a+1\right)x_1+2a=0\Rightarrow x_1^2=2\left(a+1\right)x_1-2a\)

Thay vào bài toán:

\(2\left(a+1\right)x_1-2a+x_1-x_2=3-2a\)

\(\Leftrightarrow\left(2a+3\right)x_1-x_2=3\)

\(\Rightarrow x_2=\left(2a+3\right)x_1-3\)

Thế vào \(x_1+x_2=2\left(a+1\right)\)

\(\Rightarrow x_1+\left(2a+3\right)x_1-3=2\left(a+1\right)\)

\(\Rightarrow\left(2a+4\right)x_1=2a+5\Rightarrow x_1=\dfrac{2a+5}{2a+4}\Rightarrow x_2=2a+2-\dfrac{2a+5}{2a+4}=\dfrac{4a^2+10a+3}{2a+4}\) (\(a\ne-2\))

Thế vào \(x_1x_2=2a\)

\(\Rightarrow\dfrac{\left(2a+5\right)\left(4a^2+10a+3\right)}{\left(2a+4\right)^2}=2a\)

\(\Rightarrow8a^2+24a+15=0\Rightarrow a=...\)

NV
5 tháng 3 2022

EG là đường trung bình tam giác MNP \(\Rightarrow\left\{{}\begin{matrix}EG||MN\\EG=\dfrac{1}{2}MN=x\end{matrix}\right.\)

FG là đường trung bình tam giác MPQ \(\Rightarrow\left\{{}\begin{matrix}FG=\dfrac{1}{2}PQ=x\sqrt{2}\\FG||PQ\end{matrix}\right.\)

\(\Rightarrow\widehat{\left(MN;PQ\right)}=\widehat{\left(EG;FG\right)}\)

\(cos\widehat{EGF}=\dfrac{EG^2+FG^2-EF^2}{2EG.FG}=-\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{EGF}=135^0\)

\(\Rightarrow\widehat{\left(MN;PQ\right)}=180^0-135^0=45^0\)

6 tháng 3 2022

ơi trời ơi e cảm ơn idol thầyyeu

NV
19 tháng 3 2022

2.

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=\sqrt{8^2+3^2-2.8.3.cos60^0}=7\)

\(S_{ABC}=\dfrac{1}{2}ac.sinB=\dfrac{1}{2}.8.3.sin60^0=6\sqrt{3}\)

4.

\(\Delta=\left(m+2\right)^2-16>0\Leftrightarrow m^2+4m-12>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -6\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=4\end{matrix}\right.\)

\(x_1+x_2+x_1x_2>1\)

\(\Leftrightarrow-m-2+4>1\)

\(\Rightarrow m< 1\) (2)

Kết hợp (1); (2) ta được \(m< -6\)

10 tháng 11 2021

315 kh

>

10 tháng 11 2021

3 tạ15 kg=315kg

4,3 > 4,27