Cho đa thức A = x^4 + 3x^3 - 3x^2 - ax + b
B= x^2 + 3x + 1
tìm a và b để đa thức A chia hết cho b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
Đa thức bị chia bậc 4, đa thức chia bậc 2 nên đa thức thương bậc 2, hạng tử bậc cao nhất là: x4 : x2 = x2.
Gọi thương là x2 + mx + n, ta có:
A(x) = x4 - 3x3 + ax + b = (x2 - 3x + 4)(x2 + mx + n)
= x4 + mx3 + nx2 - 3x3 - 3mx2 - 3nx + 4x2 + 4mx + 4n
= x4 + (m - 3)x3 + (n - 3m + 4)x2 - (3n - 4m)x + 4n
\(\Leftrightarrow\)m - 3 = -3 \(\Leftrightarrow\) m = 0
n - 3m + 4 = 0 n = -4
3n - 4m = -a a = 12
4n = b b = 16
Vậy a = 12; b = 16
bạn chia ra nó sẽ rư (a-12)x+16+b. để A chia hết cho B thì (a-12)x+16+b=0. Suy ra a-12=0;b+16=0 suy ra a=12;b=16
\(A⋮B\)
=>\(x^4+3x^3-3x^2-ax+b⋮x^2+3x+1\)
=>\(x^4+3x^3+x^2-4x^2-12x-4+\left(12-a\right)x+b+4⋮x^2+3x+1\)
=>12-a=0 và b+4=0
=>\(\left\{{}\begin{matrix}a=12\\b=-4\end{matrix}\right.\)