K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(2n+3;n+2)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+3-2n-4⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(2n+3;n+2)=1

=>\(\dfrac{2n+3}{n+2}\) là phân số tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

16 tháng 2 2016

Sai đề, với n chia hết cho 3 thì điều chứng mình sai hoàn toán

OLM duyệt

6 tháng 4 2018

Trả lời

Bạn xem tại link:

Câu hỏi của Nguyễn Thị Quỳnh Tiên - Toán lớp 6 - Học toán với OnlineMath

Hok tốt

6 tháng 4 2018

Gọi ƯC(2n+3,n+2) là d

Ta có:

\(\hept{\begin{cases}2n+3⋮d\\n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy A là phân số tối giản

28 tháng 2 2021

Thiếu `n in N`

Đặt `A=(n+1)/(2n+3)(x ne -3/2)`

Giả sử A không là phân số tối giản

`=>n+1 vdots 2n+3`

`=>2n+2 vdots 2n+3`

`=>1 vdots 2n+3`

`=>2n+3 in Ư(1)={1,-1}`

`=>2n in {-2,-4}`

`=>n in {-1,-2}` loại vì `n>=0`

`=>` điều giả sử sai

`=>` A là phân số tối giản với `n in N`

Để \(\dfrac{n+1}{2n+3}\)là phân số tối giản thì \(ƯCLN\left(n+1,2n+3\right)=1\)

Gọi d là ước chung lớn nhất của n+1 và 2n+3

Ta có:

\(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow}2n+3-2\left(n+1\right)⋮d\)

\(\Leftrightarrow2n+3-2n-2⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)

Do ước chung lớn nhất của cả tử và mẫu là 1 nên phân số \(\dfrac{n+1}{2n+3}\)đó tối giản  ( đpcm )

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

6 tháng 4 2022

Giả sử n+1 chia hết cho x --> 2n+2 chia hết cho x

2n+3 chia hết cho x

==> (2n+3)- (2n+2) chia hết cho x ==> 1 chia hết cho x tức là x=1 nên n+1 và 2n+3 chỉ có ước chung là 1 vì vậy mà phân số trên tối giản

6 tháng 4 2022

Thiếu đề bài bạn ơi bạn đọc lại coi nào

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

24 tháng 3 2020

Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath