e=4/3+7/3^2+10/3^3+13/3^4+...+301/3^100 so sánh với 2,75. Giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 1 + 3 + 1 + 4 + .. + 1 + 100
= 99 x 1 + ( 2 + 3 + 4 + ... + 100 )
= 5148 ( 1 )
1 + 3 + 5 +7 + ... + 301
= \(\frac{\left[\left(301-1\right):2+1\right].\left(301+1\right)}{2}\)
= 22801 (2)
Từ ( 1) và (2) => 1+3+ ....+ 301 > 1+2+1+3+1+4 +...+ 1 + 100
b) làm tương tự
Câu đầu bé theo linh cảm thôi
Câu hai:Lớn vì phép đầu với phép hai ko có số 1,25 là bằng nhau nhưng lại có.
ta có
\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)
Vậy A=B
\(1+2-3-4+5+6-7-8+...-300+301\)
\(=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(298-299-300+301\right)\)
\(=1+0+0+...+0\)
\(=1\)
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 -...- 299 - 300 + 301 + 302
A =1+(2 -3 - 4 + 5) + (6 - 7 - 8 + 9) +....+ (298 - 299 - 300 + 301)+ 302
A = 1 + 0 +....+ 0 + 302
A = 303
\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)
\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)
\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)
\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)
\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)
\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)
`A=3/4+8/9+.............+9999/10000`
`=1-1/4+1-1/9+,,,,,,,,,,+1-1/10000`
`=99-(1/4+1/9+.........+1/10000)<99-0=99`
`=>A<99`
A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
= 1 . 51
= 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
= 2 . 100
= 200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
= 1 . 304
= 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
= 1 . 100
= 100
E = 22 + 42 + ... + ( 2n )2
= 22 . ( 2n )2
= 2n4
\(a,\frac{5}{4}-\frac{1}{8}=\frac{10-1}{8}=\frac{9}{8}\)
\(b,\frac{6}{7}+\frac{4}{21}=\frac{18+4}{21}=\frac{22}{21}\)
\(c,\frac{6}{7}-\frac{3}{6}=\frac{36-21}{42}=\frac{5}{14}\)
\(d,\frac{5}{9}+\frac{3}{4}=\frac{20+27}{36}=\frac{47}{36}\)
\(e,\frac{2}{5}\times\frac{4}{7}=\frac{8}{35}\)
a) 5/4 - 1/8 b) 6/7 + 4/21 c) 6/7 - 3/6 d) 5/9 + 3/4 e) 2/5 x 4/7 h) 3/10 : 6/10
= 10/8 - 1/8 = 18/21 + 4/21 = 6/7 - 1/2 = 20/36 + 27/36 = 8/35 = 3/10 : 3/5
= 9/8 = 22/21 = 6/7 + ( -1/2 ) = 47/36 = 3/10 x 5/3
= 12/14 + ( -7/14 ) = 15/30
= 5/14 = 1/2 chúc bạn học tốt nhé !
`3/(-10) ; 1/(-2) ; 4/(-5)=> -3/10 ; -1/2 ; -4/5`
ta có : `-1/2=(-1xx5)/(2xx5)=-5/10 ; -4/5=(-4xx2)/(5xx2)=-8/10`
vậy `3/(-10) < 1/(-2) < 4/(-5)`
`--------------------`
`2/(-10) ; 7/(-5) ; -1/2=>-2/10 ;-7/5;-1/2`
ta có : `-7/5=(-7xx2)/(5xx2)=-14/10; -1/2=(-1xx5)/(2xx5)=-5/10`
vậy `2/(-10) < -1/2 < 7/(-5)`
`---------------------`
`7/(-4) ; -2/5 ; -3/10=> -7/4;-2/5;-3/10`
ta có : `-7/4=(-7xx5)/(4xx5)=-35/20 ; -2/5=(-2xx4)/(5xx4)=-8/20;-3/10=(-3xx2)/(10xx2)=-6/20`
vậy 7/(-4) > -2/5 > -3/10`
\(E=\dfrac{4}{3}+\dfrac{7}{3^2}+\dfrac{10}{3^3}+....+\dfrac{298}{3^{99}}+\dfrac{301}{3^{100}}\)
\(3E=4+\dfrac{7}{3}+\dfrac{10}{3^2}+....+\dfrac{298}{3^{98}}+\dfrac{301}{3^{99}}\)
\(3E-E=4+\dfrac{3}{3}+\dfrac{3}{3^2}+...+\dfrac{3}{3^{98}}+\dfrac{3}{3^{99}}-\dfrac{301}{3^{100}}\)
\(2E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}+\dfrac{1}{3^{98}}+4-\dfrac{301}{3^{100}}\)
Đặt
\(A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}+\dfrac{1}{3^{98}}\)
\(3A=3+1+\dfrac{1}{3}+....+\dfrac{1}{3^{96}}+\dfrac{1}{3^{97}}\)
\(3A-A=3-\dfrac{1}{3^{98}}\)
\(2A=3-\dfrac{1}{3^{98}}\)
\(A=\dfrac{3}{2}-\dfrac{1}{3^{98}\times2}\)
\(\Rightarrow2E=\dfrac{3}{2}-\dfrac{1}{3^{98}\times2}+4-\dfrac{301}{3^{100}}\)
\(2E=\dfrac{11}{2}-\dfrac{1}{3^{98}\times2}-\dfrac{301}{3^{100}}\)
\(\Rightarrow2E< \dfrac{11}{2}\Rightarrow E< \dfrac{11}{4}=2,75\)