(x-3)mu7bằng(x-3)mũ2.Giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x\left(x-3\right)=x-3\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5
Đặt x/3 = y/7 = z/5 = k
=> x=3k , y=7k , z=5k
x^2-y^2+z^2=-60
=> (3k)^2 - (7k)^2 + (5k)^2 =-60
=>3^2.k^2 - 7^2.k^2 + 5^2.k^2 = -60
=>k^2(3^2 - 7^2 + 5^2) = -60
=>k^2.(-15) = -60
=>k^2 = 4
=> k=2 hoặc k=-2
Với k=2 => x=3.2=6
y=7.2=14
z=5.2=10
Với k=-2 => x=3.(-2)=-6
y=7(-2)=-14
z=5(-2)=-10
Đặt: \(\frac{x}{3}=\frac{y}{7}=\frac{z}{5}=k\)
=> \(x=3k;\)\(y=7k;\)\(z=5k\)
Theo bài ra ta có:
\(x^2-y^2+z^2=-60\)
\(\Leftrightarrow\)\(9k^2-49k^2+25k^2=-60\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
Nếu \(k=2\)thì: \(x=6;\)\(y=14;\)\(z=20\)
Nếu \(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-20\)
\(\left(x-3\right)^7=\left(x-3\right)^2\Leftrightarrow\left(x-3\right)^7-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x-3\right)^7-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(x-3\right)^7-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\\left(x-3\right)^7=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+3=3\\x-3=1\Rightarrow x=4\end{cases}}\)
Vậy \(x\in\left\{3;4\right\}\)