Tìm \(a\) nguyên để \(\dfrac{2a+1}{a^2+3a-1}\) nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: a>=0; b>=0; ab<>0; a<>1\(M=\dfrac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-1\right)}\)
\(=\dfrac{a-2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{1}{a-1}=\dfrac{1}{a-1}\)
b: M nguyên khi a-1 thuộc {1;-1}
=>a thuộc {2;0}
1: \(P=\dfrac{3a+3\sqrt{a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
2: Để P nguyên thì \(\sqrt{a}-1+2⋮\sqrt{a}-1\)
\(\Leftrightarrow\sqrt{a}-1\in\left\{1;-1;2\right\}\)
hay \(a\in\left\{4;0;9\right\}\)
a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)
b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1
=\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)
=\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)
vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.
c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)
Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
a-1 | 1 | -1 | 2 | -2 |
a | 2 | 0 | 3 | -1 |
Thử lại | TM | TM | TM | ko TM(vì a≠-1 |
Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)
a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)
b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)
\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)
\(=\dfrac{2a}{a-1}\)
c) Để A nguyên thì \(2a⋮a-1\)
\(\Leftrightarrow2a-2+2⋮a-1\)
mà \(2a-2⋮a-1\)
nên \(2⋮a-1\)
\(\Leftrightarrow a-1\inƯ\left(2\right)\)
\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)
Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)
a: A nguyên
=>3a+2 chia hết cho a
=>2 chia hết cho a
=>a thuộc {1;-1;2;-2}
b: B nguyuên
=>2a+2+3 chia hết cho a+1
=>a+1 thuộc {1;-1;3;-3}
=>a thuộc {0;-2;2;-4}
Cộng tử ở 3 p/s lại với nhau, mẫu giữ nguyên
Cộng 2a;5a;3a lại=>10a
Cộng 9+17=>26
rồi áp dụng dạng toán chia hết là đc
gọi tổng đó là M
M=2a+9/a+3 + 5a+17/a+3 + 3a/a+3
=2a+9+5a+17+3a/a+3
=10a+29/a+3
để M nguyên thì 10a+29 chia hết a+3
ta có:
a+3 chia hết a+3
=>10(a+3) chia hết a+3
10a + 30 chia hết a+3
mà 10a+29 chia hết a+3
=> 10a+30-(10a+29) chia hết a+3
1 chia hết a+3
=> a+3 thuộc ước của 1 thì a=-2;-4
thay a=-2 đc:
M=10.(-2)+29/-2+3=9
M=10.(-4)+29/-4+3=11
vậy M đạt giá trị nguyên khi và chỉ khi a=-2;-4
Để biểu thức trên nguyên thì 2a+1 chia hết cho \(a^2+3a-1\)
Mà\(a^2+3a-1\) chia hết cho \(a^2+3a-1\)
Suy ra \(a^2+3a-1+\left(2a+1\right)=a^2+5a\) chia hết cho \(a^2+3a-1\)
Do đó \(2a^2+10a\) chia hết cho \(a^2+3a-1\)
Mà \(a\left(2a+1\right)=2a^2+a\) chia hết cho \(a^2+3a-1\)
Suy ra \(\left(2a^2+10a\right)-\left(2a^2+a\right)=9a\) chia hết cho \(a^2+3a-1\)
Do đó 18a cũng chia hết cho \(a^2+3a-1\)
Lại có 9(2a+1) = 18a+9 chia hết cho \(a^2+3a-1\)
Suy ra 9 là bội của \(a^2+3a-1\)
Đến đây dễ dàng làm phần còn lại