3) Cho A ABC có AB < AC; B:60°; C=30°.BE là phân giác của tam giác ABC (E thuộc AC). Trên tia đối của BC lấy Q sao cho BQ = AB
a) tam giác ABC là tam giác gì
b) chứng minh AQ//BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có
A + B + C = 180 ĐỘ => B + C = 180 - A = 180 - 50 = 130 ĐỘ
Theo bài ra ta có
B : C = 2 : 3 => B/2 = C /3
Áp dụng dãy tỉ số (=) ta có
\(\frac{B}{2}=\frac{C}{3}=\frac{B+C}{2+3}=\frac{100}{5}=20\)
=> B = 40 ĐỘ
=> C = 60 ĐỘ
Tam giác ABC có B < A < c( 40 < 50 < 60 ) => AC < BC < AB
VẬy ý C đúng
1. A B C D E
Chọn điểm D như hình vẽ. Gọi E là giao điểm của AB và DC.
Ta có: \(\widehat{ADE}\)là góc ngoài của tam giác ADC => \(\widehat{ADE}>\widehat{ACD}\)(1)
Tương tự \(\widehat{BDE}>\widehat{BCD}\)(2)
(1), (2) => \(\widehat{ADB}>\widehat{ACB}\)
Mà \(\widehat{ADB}=\widehat{ABD}\)
=> \(\widehat{ABC}>\widehat{ABD}=\widehat{ADB}>\widehat{ACB}\)
=> AC>AB
A B C H
Xét tam giác ABC vuông tại A
Theo BĐT tam giác: \(AB< AC+BC\)
Và tam giác AHC vuông tại H có: \(AC< AH+CH\) (1)
\(\Rightarrow AB+AC< \left(AH+BC\right)+\left(AC+CH\right)\)
Hay \(AB+AC< \left(AH+CH+BH\right)+\left(AC+CH\right)\)
Hay \(AB+AC< AH+2CH+BH+AC\)
Bớt AC ở cả hai vế: \(AB< AH+2CH+BH\) (2)
Từ (1) và (2) suy ra \(AB+AC< 2AH+2CH+BH+CH\)
Hay \(AB+AC< 2AH+2CH+BC\)
Tới đây bí rồi.
Cho tam giác ABC có A=45o; B=75o. Ta có:
B.BC<AB<AC
Hok tot
a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}=90^0\)
nên ΔABC vuông tại A
b;
Ta có: \(\widehat{ABQ}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABQ}+60^0=180^0\)
=>\(\widehat{ABQ}=120^0\)
ΔBAQ cân tại B
=>\(\widehat{BQA}=\widehat{BAQ}=\dfrac{180^0-120^0}{2}=30^0\)
BE là phân giác của góc ABC
=>\(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=30^0\)
\(\widehat{CBE}=\widehat{CQA}\)(=300)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//AQ