[x+1]+[x+1/2]+[x+1/4]+[x+1/8]+[x+1/16]=25/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
a)\(=\dfrac{3}{3}+\dfrac{4}{3}=\dfrac{7}{3}\)
b)\(=\dfrac{5}{9}\times\dfrac{3}{2}=\dfrac{15}{18}=\dfrac{5}{6}\)
d)\(=\left(\dfrac{12}{8}-\dfrac{3}{8}\right)\times2=\dfrac{9}{8}\times2=\dfrac{18}{8}=\dfrac{9}{4}\)
c)\(=\dfrac{4}{3}-\dfrac{5}{6}=\dfrac{8}{6}-\dfrac{5}{6}=\dfrac{3}{6}=\dfrac{1}{2}\)
a) 1 + 4/3 = 7/3
b) 5/9 : 2/3 = 5/6
c ) 4/3 -1/3 x 5/2
= 1 x 5/2
= 5/2
d) ( 3/2 - 3/8) : 1/2
= 9/8 : 1/2
= 9/4
e) 15/16 : 3/8 x 3/4
= 5/2 x 3/4
= 15/8
f) 7/19 x 1/3 x 7/19 x 2/3
= 7/19 x (1/3 x 2/3)
= 7/19 x 2/9
= 14/171
g) 3/5 x 8/27 x 25/3
= 3/5 x 25/3 x 8/27
= 5 x 8/27
= 40/27
h) 1/5 + 4/11 + 4/5 + 7/11
= (1/5 + 4/5) + (4/11 + 7/11)
= 1 + 1
= 2
\(A\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{9}\right)\times\left(1-\frac{1}{16}\right)\times\left(1-\frac{1}{25}\right)=\frac{8}{5}\)
\(A\times\frac{3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\frac{4\times6}{5\times5}=\frac{8}{5}\)
\(A\times\frac{3\times2\times4\times3\times5\times4\times6}{2\times2\times3\times3\times4\times4\times5\times5}=\frac{8}{5}\)
\(A\times\frac{6}{2\times5}=\frac{8}{5}\)
\(A\times\frac{3}{5}=\frac{8}{5}\)
\(A=\frac{8}{5}:\frac{3}{5}\)
\(A=\frac{8}{3}\)
ta có:
A = 8/5 : [(1 - 1/4) x ... x (1 - 1/5)]
= 8/5 : [3/4 x 8/9 x 15/16 x 24/25]
= 8/5 : 3/5
= 8/5 x 5/3
= 8/3
... là như đề bài nha!
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
(\(x\) + 1) + (\(x\) + \(\dfrac{1}{2}\)) + (\(x\) + \(\dfrac{1}{4}\)) + (\(x\) + \(\dfrac{1}{8}\)) + (\(x\) + \(\dfrac{1}{16}\)) = \(\dfrac{25}{8}\)
\(x\) + 1 + \(x\) + \(\dfrac{1}{2}\) + \(x\) + \(\dfrac{1}{4}\) + \(x\) + \(\dfrac{1}{8}\) + \(x\) + \(\dfrac{1}{16}\) = \(\dfrac{25}{8}\)
(\(x\) + \(x\) + \(x\) + \(x\) + \(x\) ) + (1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)) = \(\dfrac{25}{8}\)
\(x\) \(\times\) (1 + 1 + 1 + 1 + 1) + (\(\dfrac{16}{16}\) + \(\dfrac{8}{16}\) + \(\dfrac{4}{16}\) + \(\dfrac{2}{16}\) + \(\dfrac{1}{16}\) )= \(\dfrac{50}{16}\)
\(x\) \(\times\) 5 + \(\dfrac{31}{16}\) = \(\dfrac{50}{16}\)
\(x\) \(\times\) 5 = \(\dfrac{50}{16}\) - \(\dfrac{31}{16}\)
\(x\) \(\times\) 5 = \(\dfrac{19}{16}\)
\(x\) = \(\dfrac{19}{16}\) : 5
\(x\) = \(\dfrac{19}{80}\)
\(\left(x+1\right)+\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{4}\right)+\left(x+\dfrac{1}{8}\right)+\left(x+\dfrac{1}{6}\right)=\dfrac{25}{8}\)
\(\left(x+x+x+x+x\right)+\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\right)=\dfrac{25}{8}\)
\(x\times5+\left(\dfrac{16}{16}+\dfrac{8}{16}+\dfrac{4}{16}+\dfrac{2}{16}+\dfrac{1}{16}\right)=\dfrac{25}{8}\)
\(x\times5+\dfrac{31}{16}=\dfrac{50}{16}\)
\(x\times5=\dfrac{50}{16}-\dfrac{31}{16}\)
\(x\times5=\dfrac{19}{16}\)
\(x=\dfrac{19}{16}:5\)
\(x=\dfrac{19}{16}\times\dfrac{1}{5}=\dfrac{19}{80}\)