Giải
\(x=\sqrt{1-\frac{1}{x}}+\sqrt{x-\frac{1}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Lấy pt cuối trừ 3 lần pt đầu ta được:
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)
Pt (2) tương đương:
\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)
Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)
Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)
\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)
\(\Rightarrow abc=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị
Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị
ĐKXĐ: \(x\ge0\)
Nhân cả tử và mẫu của từng phân số với liên hợp của chúng (do các liên hợp này luôn dương) và rút gọn ta được:
\(\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+1+2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=1\Rightarrow x=1\)
Làm như này dễ hiểu hơn (áp dụng công thức của Nguyễn Việt Lâm thôi)
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\) (ĐKXĐ: x \(\ge\) 0)
\(\Leftrightarrow\) \(\frac{1}{\sqrt{x+3}}-\frac{1}{\sqrt{x+2}}+\frac{1}{\sqrt{x+2}}-\frac{1}{\sqrt{x+1}}+\frac{1}{\sqrt{x+1}}-\frac{1}{\sqrt{x}}=1\)
\(\Leftrightarrow\) \(\frac{1}{\sqrt{x+3}}-\frac{1}{\sqrt{x}}=1\)
\(\Leftrightarrow\) \(\sqrt{x+3}-\sqrt{x}\) = 1
\(\Leftrightarrow\) \(\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow\) x + 3 = 1 + 2\(\sqrt{x}\) + x (Bình phương 2 vế lên)
\(\Leftrightarrow\) 2\(\sqrt{x}\) = 2
\(\Leftrightarrow\) \(\sqrt{x}\) = 1
\(\Leftrightarrow\) x = 1 (TMĐK)
Vậy S = {1}
Chúc bn học tốt!
dk \(x\ge1\)
ap dung bdt amgm ta co
\(\sqrt{x-\frac{1}{x}}=\sqrt{1\left(x-\frac{1}{x}\right)}\le\frac{1+x-\frac{1}{x}}{2}\)
\(\sqrt{1-\frac{1}{x}}=\sqrt{\frac{1}{x}.\left(x-1\right)}\le\frac{\frac{1}{x}+x-1}{2}\)
\(\Rightarrow\sqrt{1-\frac{1}{x}}+\sqrt{x-\frac{1}{x}}\le x\)
dau = xay ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=1\\x-1=\frac{1}{x}\end{cases}\Leftrightarrow x^2-x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\left(loai\right)\end{cases}}}\)
Bất đảng thức amgm là bất đẳng thức gì