c) C=(1/2-1).(1/3-1).(1/4-1).(1/5-1)...(1/2022-1).(1/2023-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
= 1 2 3 4 2 3 4 5 . . . . . 2021 2022 2022 2023 = 1.2.3.4.5....2021.2022 2.3.4.5....2022.2023 = 1 2023
Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
$B=1+2+3+4+...+2022+2023$
Số các số hạng của B là:
$(2023-1):1+1=2023$ (số)
Tổng B bằng:
$(2023+1)\cdot2023:2=2047276$
$---$
$C=2+4+6+...+98+100$
Số các số hạng của C là:
$(100-2):2+1=50$ (số)
Tổng C bằng:
$(100+2)\cdot50:2=2550$
$---$
$D=1+3+5+...+97+99$
Số các số hạng của D là:
$(99-1):2+1=50$ (số)
Tổng D bằng:
$(99+1)\cdot50:2=2500$
$---$
$E=10+14+18+...+98+102$
Số các số hạng của E là:
$(102-10):4+1=24$ (số)
Tổng E bằng:
$(102+10)\cdot24:2=1344$
$Toru$
Số lượng số hạng:
\(\left(2023-1\right):1+1=2023\) (số hạng)
Tổng B là:
\(B=\left(2023+1\right)\cdot2023:2=2047276\)
_______________
Số lượng số hạng là:
\(\left(100-2\right):2+1=50\) (số hạng)
Tổng C là:
\(C=\left(100+2\right)\cdot50:2=2550\)
________________
Số lượng số hạng là:
\(\left(99-1\right):2+1=50\) (số hạng)
Tổng D là:
\(D=\left(99+1\right)\cdot50:2=2500\)
________________
Số lượng số hạng là:
\(\left(102-10\right):4+1=24\) (số hạng)
Tổng E là:
\(E=\left(102+10\right)\cdot24:2=1334\)
\(S=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow\dfrac{25}{5}=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\)
\(\Rightarrow5S+S=\left(-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\right)\)
\(\Rightarrow6S=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{2021}}-\dfrac{1}{5^{2022}}-\dfrac{1}{5}+\dfrac{1}{5^2}-...+\dfrac{1}{5^{2022}}-\dfrac{1}{5^{2023}}\)
\(\Rightarrow6S=-1-\dfrac{1}{5^{2023}}\)
\(\Rightarrow S=\dfrac{-1-\dfrac{1}{5^{2023}}}{6}\)
\(C=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2022}-1\right)\left(\dfrac{1}{2023}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-2021}{2022}\cdot\dfrac{-2022}{2023}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2021}{2022}\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)