K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right)\cdot\left(x+\dfrac{5}{x-3}\right)\)

\(=\left(\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\right)\cdot\left(\dfrac{x\left(x-3\right)+5}{\left(x-3\right)}\right)\)

\(=\dfrac{x^2-4x+4+x^2+2x-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)

\(=\dfrac{2x^2-4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)

\(=\dfrac{2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)

\(=\dfrac{2x\left(x^2-3x+5\right)}{\left(x+2\right)\left(x-3\right)}\)

9 tháng 10 2021

a) \(\sqrt{36\left(x-5\right)^2}\left(x\ge5\right)=6\left|x-5\right|=6\left(x-5\right)=6x-30\)

b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}\left(x>1\right)=\dfrac{1}{2}\left|1-x\right|=\dfrac{1}{2}\left(x-1\right)=\dfrac{1}{2}x-\dfrac{1}{2}\)

c) \(\sqrt{x^2\left(2x-4\right)^2}\left(x\ge2\right)=\left|x\left(2x-4\right)\right|=x\left(2x-4\right)=2x^2-4x\)

d) \(\dfrac{1}{x}\sqrt{x^2\left(1+x\right)^2}\left(x< -1\right)=\dfrac{1}{x}\left|x\left(1+x\right)\right|=\dfrac{1}{x}x\left(1+x\right)=1+x\)

9 tháng 10 2021

a) \(\sqrt{36\left(x-5\right)^2}=6\left|x-5\right|\)

\(=6\left(x-5\right)\) (khi \(x\ge5\))

hoặc \(=6\left(5-x\right)\) (khi \(x< 5\))

b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}=\dfrac{1}{2}\left|1-x\right|\)

\(=\dfrac{1}{2}\left(1-x\right)\) (khi \(x\le1\))

hoặc \(=\dfrac{1}{2}\left(x-1\right)\) (khi \(x>1\))

c) \(\sqrt{x^2\left(2x-4\right)^2}=\left|x\right|\left|2x-4\right|\)

\(=x\left(2x-4\right)\) (khi \(x\ge2\))

hoặc \(=x\left(4-2x\right)\) (khi \(0\le x< 2\))

hoặc \(=-x\left(4-2x\right)\) (khi \(x< 0\))

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:
ĐK: $x\neq \pm 2; x\neq 0$

a) 

\(A=\left[\frac{x+2}{(x+2)(x-2)}+\frac{2x}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}\right].\frac{2-x}{x}=\frac{x+2+2x+x-2}{(x-2)(x+2)}.\frac{-(x-2)}{x}\)

\(=\frac{4x}{(x-2)(x+2)}.\frac{-(x-2)}{x}=\frac{-4}{x+2}\)

b) Để $A=1\Leftrightarrow \frac{-4}{x+2}=1$

$\Leftrightarrow x+2=-4$

$\Leftrightarrow x=-6$ (thỏa ĐKXĐ)

Vậy $x=-6$

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)