Tìm x biết:
\(5^x.5^{x+2}=1000...00\) (2024 chữ số 0)\(:2^{2024}\)
giúp mình với ạ!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A có 5 phần tử
b: B có (2024-0):2+1=1013(số)
c: C có (101-1):5+1=21(số)
d: D={0;1;2;3;4}
=>D có 5 phần tử
e: E={0;2;...;998}
E có (998-0):2+1=500(số)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).
\(\left|2x-1\right|+\left(\dfrac{2}{3}-x\right)^{2024}=0\)
\(\left|2x-1\right|=-\left(\dfrac{2}{3}-x\right)^{2024}\)
Vì \(VT\ge0;VP\le0\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}2x-1=0\\\dfrac{2}{3}-x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)(Loại)
(y - 1)2024 + |\(x+y-1\)| = 0
Vì (y - 1)2024 ≥ 0 ∀ y; |\(x+y-1\)| ≥ 0 ∀ \(x;y\)
(y - 1)2024 + |\(x+y-1\)| = 0 khi và chỉ khi
y - 1 = 0 và \(x+y-1\) = 0
y - 1 = 0 Suy ra y = 1. thay y = 1 vào biểu thức \(x+y-1=0\) ta có:
\(x+1-1=0\) ⇒ \(x=0-1+1\) \(x=0\)
Vậy \(x=0;y=1\) thay vào biểu thức A= \(x^{2024}\) + y2024 ta được:
A = 02024 + 12024 = 0 + 1 = 1
a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\)
8 .x + 1 . x = 990
x . [ 8 +1 ] = 990
x . 9 = 990
x = 990 : 9
x = 110
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
\(5^x.5^{x+2}=10^{2024}:2^{2024}\)
\(\Leftrightarrow5^x.5^x.5^2=\left(10:2\right)^{2024}\)
\(\Leftrightarrow5^2.\left(5^x\right)^2=5^{2024}\)
\(\Leftrightarrow\left(5^x\right)^2=5^{2024}:5^2\)
\(\Leftrightarrow5^{2x}=5^{2022}\)
\(\Leftrightarrow2x=2022\)
\(\Leftrightarrow x=1011\)
\(5^x\cdot5^{x+2}=1000...00:2^{2024}\)
=>\(5^{2x+2}=10^{2024}:2^{2024}=5^{2024}\)
=>2x+2=2024
=>2x=2022
=>x=1011