K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2024

lớp năm thôi

NV
3 tháng 4 2024

\(2P\left(1-x\right)-P\left(x\right)=3x\) (1)

\(\Rightarrow2P\left(x\right)-P\left(1-x\right)=3\left(1-x\right)\)

\(\Rightarrow4P\left(x\right)-2P\left(1-x\right)=6\left(1-x\right)\) (2)

Cộng vế (1) và (2)

\(\Rightarrow3P\left(x\right)=3x+6\left(1-x\right)\)

\(\Rightarrow3P\left(x\right)=6-3x\)

\(\Rightarrow P\left(x\right)=2-x\)

Thu gọn và sắp xếp:

P(x) = x² + 5x^4 - 3x³ + x² + 4x^4 + 3x³ - x + 5

       = (5x^4 + 4x^4) + (- 3x³+ 3x³) + (x² + x²) - x + 5

       = 9x^4 + 2x² - x +5

Q(x)= x - 5x³ - x² - x^4 + 4x³ - x² - 3x - 1

       = -x^4 + (- 5x³ + 4x³) + (- x² - x²) + (x - 3x) - 1 

       = -x^4 - x³ -2x² - 2x - 1 

mik mới chỉ làm đc vz thui ak

14 tháng 8 2020

a, Ta có : \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(=2x^2+9x^4-x+5\)

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)

\(=4x-x^3-2x^2-1-x^4\)

Sắp xếp : 

\(P\left(x\right)=9x^4+2x^2-x+5\)

\(Q\left(x\right)=-x^4-x^3-2x^2+4x-1\)

b, \(M\left(x\right)=9x^4+2x^2-x+5-x^4-x^3-2x^2+4x-1\)

\(=8x^4+3x+4\)Bậc : 4 

c, \(N\left(x\right)=18x^4+4x^2-2x+10+x^4+x^3+2x^2-4x+1\)

\(=19x^4+6x^2-6x+11\)

a: \(P\left(x\right)=5x^3-4x+7\)

Bậc 3

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

Bậc 3

b: M(x)=P(x)+Q(x)

=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2

c: M(x)=0

=>2-x^2=0

=>\(x=\pm\sqrt{2}\)

28 tháng 10 2021

x^4+6x^3+7x^2-6x+a=x^4+2.3x.x^2+9x^2-6x-2x^2+a

=(x^2+3x)^2-2(3x+x^2)+a=(3x+x^2)(x^2+3x-2)+a

vậy a=3(3x+x^2)

tôi chịu, sai thì... T.T

28 tháng 10 2021

bạn tìm hiểu ở bài 12 sgk, đại khái ta sẽ có 

 x^4+6x^3+7x^2-6x+a chia  x^2+3x+1 dư a+3

mà để 2 đa thức chia hết thì x+3=0=)x=-3

thực ra còn có cách khác hay hơn, nhưng mình làm ko ra nên dùng tạm cách này, thông cảm :)

`a,`

`P(x)=5x^3 - 3x + 7 - x`

`= 5x^3 +(-3x-x)+7`

`= 5x^3-4x+7`

Bậc: `3`

 

`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`

`= -5x^3-x^2+(2x+2x)+(-3-2)`

`= -5x^3-x^2+4x-5`

Bậc: `3`

`b,`

`P(x)=M(x)-Q(x)`

`-> M(x)=P(x)+Q(x)`

`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`

`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`M(x)=-x^2+2`

`c,`

`M(x)=-x^2+2=0`

`\leftrightarrow -x^2=0-2`

`\leftrightarrow -x^2=-2`

`\leftrightarrow x^2=2`

`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)

`a,`

`P(x)=5x^3-3x+7-x`

`= 5x^3+(-3x-x)+7`

`= 5x^3-4x+7`

Bậc của đa thức: `3`

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`= -5x^3+(2x+2x)-x^2+(-3-2)`

`= -5x^3-x^2+4x-5`

Bậc của đa thức: `3`

`b,`

`P(x)=M(x)-Q(x)`

`-> M(x)=Q(x)+P(x)`

`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`= 5x^3-4x+7-5x^3-x^2+4x-5`

`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`= -x^2+2`

Vậy, `M(x)=-x^2+2`

`c,`

`-x^2+2=0`

`=> -x^2=0-2`

`=> -x^2=-2`

`=> x^2=2`

`=> x= \sqrt {+-2}`

Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`

a: P(x)=5x^3-4x+7

Q(x)=-5x^3-x^2+4x-5

b: M(x)=P(x)-Q(x)

=5x^3-4x+7+5x^3+x^2-4x+5

=10x^3+x^2-8x+12

16 tháng 3 2017

k cho mk r mk giai cho

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5

=6x^5-4x^3+29x^2-2x+2

b: bậc của P(x) là 5

c: hệ số lớn nhất là 6

Hệ số tự do là 2

P(-1)=-6+4+29+2+2=29+2=31

6 tháng 3 2022

a, \(P=-x^4+x^3+x^2-5x+2\)

hế số cao nhất 2 ; hế số tự do 2 ; bậc 4 

\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)

hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4 

b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)