cho a+b+c=0. chứng minh rằng nếu a2 + b2 + c2 > 6 thì 1 trong 3 số a,b,c không thuộc [-2;1]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi : a2 ( b - c ) + b2 ( c - a ) + c2 ( a - b ) = 0 thành ( a - b ) ( b - c ) ( a - c ) = 0
Ta suy ra : a = b hoặc b = c hoặc c = a
Vậy 3 số a,b,c tồn tại 2 số bằng nhau
à quên, cách biến đổi như vậy bạn tham khảo ở đây : Câu hỏi của Tên của bạn - Toán lớp 8 - Học toán với OnlineMath
\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)
Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:
Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)
Ta có :
\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2bc-2ac\)
mà theo đề bài \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow\left(a-b-c\right)^2=-ab-bc-ac=0\)
\(\Rightarrow\left(a-b-c\right)^2=-\left(ab+bc+ac\right)=0\)
mà \(-\left(ab+bc+ac\right)\le0\)
\(\Rightarrow a=b=c=0\)
\(\Rightarrow dpcm\)
Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)
CMTT: \(ab+bc>b^2;ab+ac>a^2\)
Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
+ ta có a,b,c thuộc [0,1]
=> b^2 <= b và c^3 <= c
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca)
+ mặt # a , b , c thuộc [0,1]
=> (1 - a)(1 - b)(1 - c) >=0
<> 1- a - b - c + ab + bc + ca - abc >=0
<> a + b + c - (ab + bc + ca) <= 1 - abc
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)
sai rồi