so sánh
\(\frac{a-1}{a}\)và\(\frac{b-1}{b}\)(a,b >0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/3 = 13/39
=> 13/38 > 13/39 = 1/3
1/3 = 29/87
=> 29/88 <29/87=1/3
Vì 13/38 >1/3 > 29/88 nên -13/38 < -1/3 < -29/88
Vậy -13/38 < -29/88
b)Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Xét 3 TH :
1) a < b
Khi đó ta có ab + 1a < ab + 1b hay a(b+1) < b(a+1)
Chia 2 vế cho b(b+1) ta được a/b < (a+1)/(b+1)
2) a = b ---> a/b = (a+1)/(b+1) = 1
3) a > b
Khi đó ta có ab + 1a > ab + 1b hay a(b+1) > b(a+1)
Chia 2 vế cho b(b+1) ta được a/b > (a+1)/(b+1)
Tóm lại
a/b < (a+1)/(b+1) nếu a < b
a/b = (a+1)/(b+1) nếu a = b
a/b > (a+1)/(b+1) nếu a > b
Qui đồng mẫu số:
a/b = a(b + 1)/ b(b + 1) = ab + 1a/ b(b + 1)
a+1/ b+1 = ( a + 1)b / (b + 1)b = ab+1b/ b(b+1)
Vì b>o nên mẫu của 2 phân số trên dương. Chỉ cần so sánh tử số:
So sánh ab+1a và ab+1b
+) Nếu a<b thì tử phân số thứ 1< tử phân số thứ 2
+) Nếu a=b => 2 phân số bằng nhau (=1)
+) Nếu a>b thì tử phân số thứ 1> tử phân số thứ 2
a-1/a = a/a-1/a = 1-1/a
b-1/b = 1- 1/b
Nếu a>b suy ra 1/a<1/b ( cùng tử =1 phân số có mẫu lớn thì phân số nhỏ hơn)
Nên ta có a-1/a > b-1/b
và ngược lại
\(A=\frac{100^{2007}+1}{100^{2008}+1}\Rightarrow100.A=\frac{100^{2008}+100}{100^{2008}+1}=\frac{100^{2008}+1+99}{100^{2008}+1}=1+\frac{99}{100^{2008}+1}\)
\(B=\frac{100^{2006}+1}{100^{2007}+1}\Rightarrow100.B=\frac{100^{2007}+100}{100^{2007}+1}=\frac{100^{2007}+1+99}{100^{2007}+1}=1+\frac{99}{100^{2007}+1}\)
Vì \(\frac{99}{100^{2007}+1}>\frac{99}{100^{2008}+1};1=1\Rightarrow1+\frac{99}{100^{2007}+1}>1+\frac{99}{100^{2008}+1}\)hay \(A>B\)
Vậy \(A>B\)
So sánh 2 phân số sau $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10
kick dzô chữ xanh là được!! OK
Ta có :
10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)
= \(\frac{10^{2012}+10}{10^{2012}+1}\)
= \(\frac{10^{2012}+1+9}{10^{2012}+1}\)
= \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)
= 1 - \(\frac{9}{10^{2012}+1}\)
10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)
= \(\frac{10^{2013}+10}{10^{2013}+1}\)
= \(\frac{10^{2013}+1+9}{10^{2013}+1}\)
= 1 - \(\frac{9}{10^{2013}+1}\)
Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\) nên 10.A > 10.B
=> A >B
Vậy ...........
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B