K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2021

\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}=\dfrac{a^2+b^2}{ab}+\dfrac{9ab}{a^2+b^2}\ge2\sqrt{\dfrac{\left(a^2+b^2\right).9ab}{ab\left(a^2+b^2\right)}}=6\)

Dấu "=" xảy ra khi \(a^2+b^2=3ab\)

(Đề bài sai, đây là cực trị ko xảy ra tại \(a=b\))

 

8 tháng 5 2018

Áp dụng BĐT Cauchy Sshwarz, ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) 

Mà a+b+c>2

\(\Rightarrow VT>1\) (đpcm)

17 tháng 8 2017

a)Áp dụng bđt Cô-si:

\(\dfrac{a}{b}+\dfrac{b}{a}-1+\dfrac{ab}{a^2-ab+b^2}=\dfrac{a^2+b^2-ab}{ab}+\dfrac{ab}{a^2-ab+b^2}\ge2\sqrt{\dfrac{a^2+b^2-ab}{ab}.\dfrac{ab}{a^2-ab+b^2}}=2\)

=>\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{ab}{a^2-ab+b^2}\ge3\)

Dấu "=" xảy ra khi a=b=1

b) bđt sai rồi

27 tháng 7 2018

Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP

=> đpcm

21 tháng 6 2017

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

23 tháng 8 2017

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

27 tháng 7 2018

Áp dụng BDT Bunhiacopxki:

\(\left[\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{x+z}\right)^2\right]\left[\frac{x^2}{\left(\sqrt{x+y}\right)^2}+\frac{y^2}{\left(\sqrt{y+z}\right)^2}+\frac{z^2}{\left(\sqrt{x+z}\right)^2}\right]\)\(\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow2\left(x+y+z\right)\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{x+y+z}{2}\)

3 tháng 8 2019

giair dùm mình đi