Tìm số nguyên dương nhỏ nhất có 6 chữ số sao cho tổng của các chữ số bằng 42.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số có 2018 chữ số lớn nhất là 999....99 (2018 chữ số 9)
=> A lỡn nhất là 2018 x 9 = 18162
=> B lớn nhất là 1 + 8 + 1 + 6 + 2 = 18
=> C lớn nhất là 1 + 8 = 9
Ta có 3 x 9 + 2 = 29 mà 29 là số nguyên tố nên không tồn tại số như vậy
Bài 69:
Số bé là:
2008/2=1004
Số lớn là:
2008-1004=1004
Bài 70:
Số cần tìm là 732111...
Bài 71:
Số cần tìm là 6789.
Bài 72:
Số cần tìm là 60000...
Tck mik nhé
Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.
dễ thấy để S(n) và S(n+1) đều chia hết cho 1 số thì đuôi của n kết thúc bằng các số 9.
giả sử n có x số 9 cuối(ta tìm x nhỏ nhất)
khi đó n có dạng a 99...9 (x số 9)
=> n+1=b00...0 ( x+1 số 0) với b=a+1
do S(n) ≡ S(n+1) (mod 7) => a+9x ≡ b (mod 7) => 9x ≡ 1 (mod 7)
=> x=4
=> n=a9999
mà S(n) chia hết cho 7 => a=6 => n=69999 là nhỏ nhất thỏa mãn :D
Lời giải:
Gọi số cần tìm là $\overline{abcdef}$ với $a,b,c,d,e,f$ là số tự nhiên có 1 chữ số, $a\geq 1$ và $a+b+c+d+e+f=42$
Để số nhỏ nhất thì $a$ nhỏ nhất có thể
$\Rightarrow a=1$
$\Rightarrow b+c+d+e+f=41$
Do $c,d,e,f\leq 9$ nên $b=41-c-d-e-f\geq 41-9-9-9-9=5$
Để $\overline{abcdef}=\overline{1bcdef}$ nhỏ nhất thì $b$ nhỏ nhất
$\Rightarrow b=5$
Khi đó: $c+d+e+f=41-5=36$. Do $c,d,e,f$ là số tự nhiên có 1 chữ số nên $c=d=e=f=9$
Vậy số nhỏ nhất cần tìm là $159999$