Tìm x
a)x^2 -4x +6 =0
b) 4x^2 + 4x - 7 =0
Ai làm nhanh mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b) \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c) \(9-6x+x^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
a: Ta có: \(x^2-64=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
b: Ta có: \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
hay \(x=\dfrac{1}{2}\)
c: ta có: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
hay x=3
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
\(a,\Rightarrow\left(2x-1\right)\left(2x+1\right)-x\left(2x+1\right)=0\\ \Rightarrow\left(2x+1\right)\left(2x-1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\\ b,\Rightarrow\left(x-3\right)\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\\ c,\Rightarrow\left(x^2-8x+16\right)-10=0\\ \Rightarrow\left(x-4\right)^2-10=0\\ \Rightarrow\left(x-4-\sqrt{10}\right)\left(x-4+\sqrt{10}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4+\sqrt{10}\\x=4-\sqrt{10}\end{matrix}\right.\)
a) \(5-\frac{2x}{3}=4x-\frac{1}{-5}\)
\(\frac{75-10x}{15}=\frac{60x+3}{15}\)
75 - 10x = 60x +3
72 = 70x
\(\frac{72}{70}\) = x
x =\(\frac{36}{35}\)
Vậy x = \(\frac{36}{35}\)
b) \(2x-\frac{10}{6}=\frac{-27}{5}-x\)
\(2x-\frac{5}{3}=\frac{-27}{5}-x\)
\(\frac{30x-25}{15}=\frac{-81-15}{15}\)
30x =-96+25
30x =-71
x= -71/30
Vậy x= -71/30
c) \(13x-\frac{2}{2x}+5=\frac{76}{17}\)
13x - 1/x +5 = 76/17
\(\frac{221x-17+85}{17x}=\frac{76x}{17x}\)
221x +68 = 76x
221x-76x =-68
145x =-68
x =\(\frac{-68}{145}\)
Vậy .........
`a)4x(x-2)+x-2=0`
`<=>(x-2)(4x+1)=0`
`<=>[(x-2=0),(4x+1=0):}`
`<=>[(x=2),(x=-1/4):}`
Vậy `S={2;-1/4}.`
`b)(3x-1)^3-9=0`
`<=>(3x-1-3)(3x-1+3)=0`
`<=>(3x-4)(3x+2)=0`
`<=>[(3x-4=0),(3x+2=0):}`
`<=>[(x=4/3),(x=-2/3):}`
Vậy `S={4/3;-2/3}.`
`c)x^3-8+(x-2)(x+1)=0`
`<=>(x-2)(x^2+2x+4)+(x-2)(x+1)=0`
`<=>(x-2)(x^2+3x+5)=0`
Mà `x^2+3x+5=(x+3/2)^2+11/4>=11/4>0`
`<=>x-2=0`
`<=>x=2`
Vậy `S={2}`
a) Ta có: \(4x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{4}\end{matrix}\right.\)
b)Ta có: \(\left(3x-1\right)^2-9=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
c) Ta có: \(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
aを見つける= 175度はどれくらい尋ねるaを見つける= 175度はどれくらい尋ねる
b. \(4x^2+4x-7=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x+1-8=0\)
\(\Leftrightarrow\left(2x+1\right)^2-8=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{8}\right)\left(2x+1+\sqrt{8}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1-\sqrt{8}=0\\2x+1+\sqrt{8}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{8}-1}{2}\\x=\frac{-\sqrt{8}-1}{2}\end{cases}}\)
k mình nha bn <3 thanks nhìu hen