K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2+...+\left(\dfrac{2}{3}\right)^{2024}\)

=>\(\dfrac{2}{3}C=\left(\dfrac{2}{3}\right)^2+\left(\dfrac{2}{3}\right)^3+...+\left(\dfrac{2}{3}\right)^{2025}\)

=>\(\dfrac{2}{3}C-C=\left(\dfrac{2}{3}\right)^2+\left(\dfrac{2}{3}\right)^3+...+\left(\dfrac{2}{3}\right)^{2025}-\dfrac{2}{3}-\left(\dfrac{2}{3}\right)^2-...-\left(\dfrac{2}{3}\right)^{2024}\)

=>\(-\dfrac{1}{3}\cdot C=\left(\dfrac{2}{3}\right)^{2025}-\dfrac{2}{3}\)

=>\(C\cdot\dfrac{1}{3}=\dfrac{2}{3}-\left(\dfrac{2}{3}\right)^{2025}=\dfrac{2}{3}-\dfrac{2^{2025}}{3^{2025}}=\dfrac{2\cdot3^{2024}-2^{2025}}{3^{2025}}\)

=>\(C=\dfrac{2\cdot3^{2024}-2^{2025}}{3^{2024}}\)

\(C+D=\dfrac{2\cdot3^{2024}-2^{2025}+3\cdot2^{2024}}{3^{2024}}\)

28 tháng 7 2023

\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)

\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)

Ta có

\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)

\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)

\(\Rightarrow C>D\)

 

30 tháng 9 2023

\(S=1+3^2+3^4+...+3^{2022}\)

\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)

\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)

d, không đáp án nào đúng

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Lời giải:

$S=1+3^2+3^4+....+3^{2022}$

$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$

$\Rightarrow 9S-S=3^{2024}-1$

$\Rightarrow S=\frac{3^{2024}-1}{8}$

Đáp án D.

3D=1+1/3+...+1/3^2023

=>2D=1-1/3^2024

=>\(2D=\dfrac{3^{2024}-1}{3^{2024}}\)

=>\(D=\dfrac{3^{2024}-1}{2\cdot3^{2024}}\)

1 tháng 1

giải dễ hiểu 2/2024+4/2024+6/2024+....+2022/2024

10 tháng 9 2023

\(S=C^0_{2024}+\dfrac{1}{2}C^2_{2024}+\dfrac{1}{3}C^4_{2024}+\dfrac{1}{4}C^6_{2024}+...+\dfrac{1}{1013}C^{2024}_{2024}\)

Ta có :

\(\dfrac{1}{k+1}C^{2k-1}_n=\dfrac{1}{k+1}.\dfrac{n!}{\left(2k-1\right)!\left(n-2k+1\right)!}\)

\(=\dfrac{1}{n+1}.\dfrac{\left(n+1\right)!}{2k!\left[\left(n+1\right)-2k\right]!}\)

\(=\dfrac{1}{n+1}C^{2k}_{n+1}\)

\(\Rightarrow S_n=\dfrac{1}{n+1}\Sigma^{2k}_{k=0}C^{2k}_{n+1}=\dfrac{1}{n+1}\left(\Sigma^{2k}_{k=0}C^{2k-1}_{n+1}-C^0_{n+1}\right)=\dfrac{2^{2n-1}-1}{n+1}\)

\(\Rightarrow S=\dfrac{2^{2025}-1}{1013}\)

10 tháng 9 2023

S = C₀₂₀₂₄ + 12.C₂₀₂₄ + 13.C₂₀₂₄ + 14.C₂₀₂₄ + ... + 11013.C₂₀₂₄

= (C₀₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + (C₂₀₂₄ + C₂₀₂₄ + C₂₀₂₄ + ... + C₂₀₂₄) + ... + (C₂₀₂₄)

= 11014.C₂₀₂₄

= 11014.

16 tháng 8 2024

jhvugb