K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

18 tháng 5 2017

Admin ơi,bài này sai đề

18 tháng 5 2017

a, Ta có:\(8+15=23;8+4=12;45+15=60;45+4=49\)

\(\Rightarrow\) Các tập hợp của C là : \(\left\{12;23;49;60\right\}\)

b, Ta có:

\(8-4=4;45-15=30;45-4=41\)

\(\Rightarrow\) Các tập hợp của D là : \(\left\{4;30;41\right\}\)

c, Ta có:

\(8.15=120;8.4=32;45.15=675;45.4=180\)

\(\Rightarrow\) Các tập hợp của E là : \(\left\{32;120;180;675\right\}\)

d, Ta có:

\(8:4=2;45:15=3\)

\(\Rightarrow\) Các tập hợp của G là: \(\left\{2;3\right\}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Lấy n bất kì thuộc tập hợp B.

Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)

\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)

\( \Rightarrow n \in A\)

Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)

12 tháng 6 2021

Có các phần tử của A là bội của 6

Các phần tử của B là bội của 15

Các phần tử của C là bội của 30

mà [6;15]=30

=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30

Hay \(C=A\cap B\) 

BCNN(4;6)=12

=>BC(4;6)=B(12)

=>A=B

12 tháng 11 2016

Liệt kê các phần tử của 2 tập hợp

a. \(A=\left\{0,1,2,3\right\}\) \(B=\left\{-2,-1,0,1,2\right\}\)

\(A\cap B=\left\{0,1,2\right\}\)

b. Có 20 tích được tạo thành

 -2-1012
000000
1-2-1012
2-4-2024
3-6-3036
13 tháng 11 2016

Cảm ơn vui

1.Cho A=\(\dfrac{n+1}{n-2}\)

a)Tìm n Z để A là phân số

Để A là phân số thì n+1;n-2 ∈​ Z ; n-2 khác 0

<=> n ∈​ Z; n >2

Vậy A là phân số <=> n ∈​ Z; n>2

b)Tìm nZ để AZ

A ∈​ Z <=> n+1 chia hết cho n-2

<=>n-2+3 chia hết cho n-2

<=>3 chia hết cho n-2 ( vì n-2 chia hết cho n-2)

<=>n-2 ∈​ Ư(3)={1;-1;3;-3}

<=>n ∈​ {3;1;5;-1}

Vậy để A Z thì n ∈​ {3;1;5;-1}

c)Tìm NZ để A lớn nhất

2.Cho B=\(\dfrac{3n+2}{4n+3}\)

Chứng minh B tối giản

1c) Tìm n∈Z để A lớn nhất:

Ta có A=\(\dfrac{n+1}{n-2}\)=\(\dfrac{n-2+3}{n-2}\)=\(\dfrac{n-2}{n-2}\)+\(\dfrac{3}{n-2}\)=1+\(\dfrac{3}{n-2}\)

=> A lớn nhất <=> \(\dfrac{3}{n-2}\) lớn nhất

<=>n-2 nhỏ nhất; n-2>0; n-2∈Z

<=>n-2=1

<=>n=3

Vậy A lớn nhất <=> n-3