1:9.27x=3x ai làm giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(\Leftrightarrow x\sqrt{3x-2}-x^2+\left(x+1\right)\sqrt{5x-1}-\left(x+1\right)^2+x^2+\left(x+1\right)^2-8x+3=0\)
\(\Leftrightarrow x\left(\sqrt{3x-2}-x\right)+\left(x+1\right)\left(\sqrt{5x-1}-x-1\right)+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\dfrac{-x\left(x^2-3x+2\right)}{\sqrt{3x-2}+x}+\dfrac{-\left(x+1\right)\left(x^2-3x+2\right)}{\sqrt{5x-1}+x+1}+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)+\left(2-\dfrac{x}{\sqrt{3x-2}+x}-\dfrac{x+1}{\sqrt{5x-1}+x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{\sqrt{3x-2}}{\sqrt{3x-2}+x}+\dfrac{\sqrt{5x-1}}{\sqrt{5x-1}+x+1}\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\) (ngoặc đằng sau luôn dương)
\(\Leftrightarrow...\)
Câu 1:
\(2x^3-3x^2+x+a\)
\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)
\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :
\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).
Câu 2:
\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)
\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)
\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)
\(\Leftrightarrow2x^2-10x-11=0\)
\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:
\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)
Ta có : \(\frac{2x+5}{x+1}=\frac{2x+2+3}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Vì 2 \(\inℤ\Rightarrow\frac{3}{x+1}\inℤ\Rightarrow3⋮x+1\Rightarrow x+1\inƯ\left(3\right)\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{0;2-2;-4\right\}\)
Để \(\frac{3x-1}{2x-1}\inℤ\Rightarrow3x-1⋮2x-1\Rightarrow2\left(3x-1\right)⋮2x-1\Rightarrow6x-2⋮2x-1\)
=> \(6x-3+1⋮2x-1\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
Vì \(3\left(2x-1\right)⋮2x-1\)
=> \(1⋮2x-1\Rightarrow2x-1\inƯ\left(1\right)\Rightarrow2x-1\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;0\right\}\)
\(\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=2+\frac{3}{x+1}\)
Để phân số nguyên => \(\frac{3}{x+1}\)nguyên
=> \(3⋮x+1\)
=> \(x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(x=\left\{0;-2;2;-4\right\}\)
\(\frac{3x-1}{2x-1}\)
Để phân số nguyên => \(3x-1⋮2x-1\)
=> \(2\left(3x-1\right)⋮2x-1\)
=> \(6x-2⋮2x-1\)
\(\Rightarrow3\left(2x-1\right)+1⋮2x-1\)
\(\Rightarrow1⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow x=\left\{1;0\right\}\)
1.\(3x^2+12x-66=0\)
\(\Rightarrow\)\(3\left(x^2+4x+4\right)-78=0\)
\(\Rightarrow3\left(x+2\right)^2=78\)
\(\Rightarrow\left(x+2\right)^2=26\)
\(\Rightarrow x+2=\sqrt{26}\)hoặc \(x+2=-\sqrt{26}\)
\(\Rightarrow x=\sqrt{26}-2\)hoặc \(x=-\sqrt{26}-2\)
7: Ta có: \(\left(3x+4\right)\left(2x-1\right)+6x\left(1-x\right)=0\)
\(\Leftrightarrow6x^2-3x+8x-4+6x-6x^2=0\)
\(\Leftrightarrow11x=4\)
hay \(x=\dfrac{4}{11}\)
8: Ta có: \(2x\left(x^2-1\right)+x\left(-2x^2-3x+1\right)=-x-27\)
\(\Leftrightarrow2x^3-2x-2x^3-3x^2+x+x+27=0\)
\(\Leftrightarrow x^2=9\)
hay \(x\in\left\{3;-3\right\}\)
\(\frac{1}{4}+\frac{1}{3}:3x=-5\)
\(\frac{1}{3}:3x=(-5)-\frac{1}{4}\)
\(\frac{1}{3}:3x=\frac{-21}{4}\)
\(\frac{1}{9}\cdot x=\frac{-21}{4}\)
\(x=\frac{-21}{4}:\frac{1}{9}\)
x=\(\frac{-189}{4}\)
Vậy x=\(\frac{-189}{4}\)
\(\frac{1}{4}+\frac{1}{3}:3x=-5\Rightarrow\frac{1}{3}:3x=\left(-5\right)-\frac{1}{4}=\frac{-21}{4}\)
\(3x=\frac{1}{3}:\frac{-21}{4}=\frac{1}{3}.\frac{4}{21}=\frac{4}{63}\)
\(\Rightarrow x=\frac{4}{63}:3=\frac{4}{63}.\frac{1}{3}=\frac{4}{189}\)
Vì \(\hept{\begin{cases}3x=5y\\2y=-3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{-3}=\frac{z}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{-2}\end{cases}}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{-2}=\frac{x+y-z}{5+3-\left(-2\right)}=\frac{2}{10}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}.5=1\\y=\frac{1}{5}.3=\frac{3}{5}\\z=\frac{1}{5}.\left(-2\right)=\frac{-2}{5}\end{cases}}\)
Ta có :
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)
\(2y=-3z\Leftrightarrow\frac{y}{3}=-\frac{z}{2}\)
Do đó :
\(\frac{x}{5}=\frac{y}{3}=-\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=-\frac{z}{2}=\frac{x+y-z}{5+3-2}=\frac{2}{6}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{1}{3}\Rightarrow x=\frac{5}{3}\\\frac{y}{3}=\frac{1}{3}\Rightarrow y=1\\-\frac{z}{2}=\frac{1}{3}\Rightarrow-\frac{2}{3}\end{cases}}\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3\cdot5-2\cdot2}=\dfrac{44}{11}=4\)
Do đó: x=20; y=8
theo mình nghĩ là
x=1
đúng tk nhé
sai sửa
làm kiểu gì bn