K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

\(\sqrt{12+8x-x^2-x^3}\)

\(=\sqrt{3\left(x^2+4x+4\right)-x\left(x^2+4x+4\right)}\)

\(=\sqrt{\left(3-x\right)\left(x+2\right)^2}\)

\(=\sqrt{3-x}.\left(x+2\right)\)

Chia tử cho mẫu còn :

\(x+2\)

16 tháng 9 2017

thank you

27 tháng 10 2020

Để \(\sqrt{x}\) xác định

 \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow-7x\le0\)

\(\Rightarrow\sqrt{-7x}\)không tồn tại 

\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại

=> A không tồn tại 

23 tháng 7 2023

\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)

\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)

\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\)    (vì \(x>4\) )

@seven 

23 tháng 7 2023

thanks you very much

a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)

\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)

b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)

\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)

c: \(C=x-4+\left|x-4\right|\)

=x-4+x-4

=2x-8

17 tháng 8 2019

a, ĐKXĐ: x>0 (1)

b,T= (\(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)+6\sqrt{x}-9\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}\)).(\(\frac{\sqrt{x}+1}{2-4\sqrt{x}}\))+\(\frac{x-3\sqrt{x}-1}{3\sqrt{x}}\)

= \(\left(\frac{x+3\sqrt{x}+2+6\sqrt{x}-9x-9\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}+1\right)}\right)\).\(\left(\frac{\sqrt{x}+1}{2-4\sqrt{x}}\right)\)+\(\frac{x-3\sqrt{x}-1}{3\sqrt{x}}\)

= \(\left(\frac{2-8x}{3\sqrt{x}\left(\sqrt{x}+1\right)}\right)\).\(\left(\frac{\sqrt{x}+1}{2-4\sqrt{x}}\right)\)+\(\frac{x-3\sqrt{x}-1}{3\sqrt{x}}\)

= \(\left(\frac{2\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}\right)\).\(\left(\frac{\sqrt{x}+1}{2\left(1-2\sqrt{x}\right)}\right)\)+\(\frac{x-3\sqrt{x}-1}{3\sqrt{x}}\)

= \(\frac{1+2\sqrt{x}}{3\sqrt{x}}\)+\(\frac{x-3\sqrt{x}-1}{3\sqrt{x}}\) = \(\frac{x-\sqrt{x}}{3\sqrt{x}}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{3\sqrt{x}}\)=\(\frac{\sqrt{x}-1}{3}\)

c, Để T<0 \(\Leftrightarrow\)\(\frac{\sqrt{x}-1}{3}\) <0 \(\Leftrightarrow\) \(\sqrt{x}\)-1<0 \(\Leftrightarrow\) \(\sqrt{x}\)<1\(\Leftrightarrow\) x<1 mà do ĐK (1)

=> Để T<0 \(\Leftrightarrow\) 0<x<1

17 tháng 8 2019

Cho mk hỏi là bước t2 từ dưới lên phần b thì \(\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)\) sao lại khai triển đc như vậy

24 tháng 9 2016

câu a tớ giải được rồi, các bn giải câu b giùm mk