Tìm x để a có giá trị lớn nhất
X^2+15/x^2+3
Giúp mình với nhé mai mình nộp rùi thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
x=3/2 thì biểu thúc đạt giá trị lớn nhất là 6,5
x=0 thì biểu thức C là số tự nhiên
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
`@` `\text {Ans}`
`\downarrow`
`a)`
`16^3 = (4^2)^3 = 4^6`
`b)`
`25^6 = (5^2)^6 = 5^12`
`c)`
`81^5 = (9^2)^5 = 9^10`
`d)`
`27^5 = (3^3)^5 = 3^15`
`e)`
`64^3*16^3`
`= (4^3)^3*(4^2)^3`
`= 4^9*4^6`
`= 4^15`
_____
`@` Nâng lên lũy thừa
CT: `(a^m)^n=a^m*a^n = a^(m*n)`
\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+13}\)
ĐỂ A ĐẠT GTLN <=> \(\frac{12}{x^2+3}\)ĐẠT GTLN <=> \(x^2+3\)PHẢI ĐẠT GTNN
XÉT \(\frac{12}{x^2+3}\)CÓ: \(x^2\ge0\Rightarrow x^2+3\ge3\)DẤU "=" XẢY RA <=> \(x=0\)
TẠI x=0 => \(\frac{12}{x^2+3}=\frac{12}{3}=4\)
=> MaxA=1+4=5 khi x=0
cảm ơn nhé