tìm giá trị nhỏ nhất
\(E=\frac{3\text{x}^2-8\text{x}+6}{x^2-2\text{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có :
\(x^2\ge0\forall x,y^2\ge0\forall y\)
\(\Rightarrow x^2+y^2\ge0\forall x,y\)
Ta lại có
\(x^2+y^2\ge2xy\)
Để 2xy đạt giá trị nhỏ nhất thì xy đạt giá trị nhỏ nhất
Nhưng cả x lẫn y nhất định phải cx dấu ko đk khác dấu
Dấu "=" xảy ra khi và chỉ khi x = y 0
Vậy GTNN của x2 + y2 là 0 khi và chỉ khi x = y = 0
Bài 2:
Ta thấy: \(\left|x+1\right|^{11}\ge0\)
\(\Rightarrow\left|x+1\right|^{11}+10\ge10\)
\(\Rightarrow A\ge10\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 3:
\(B=x^2+9x+6=x^2+9x+\frac{81}{4}-\frac{57}{4}\)
\(=\left(x^2+9x+\frac{81}{4}\right)-\frac{57}{4}\)
\(=\left(x+\frac{9}{2}\right)^2-\frac{57}{4}\ge\frac{57}{4}\)
Dấu "=" xảy ra khi \(x=-\frac{9}{2}\)
Bài 4: phân thức trên ko xác định khi mẫu bằng 0
Tức là \(x-7=0\Rightarrow x=7\)
P/s:Mấy bài này cx ko khó lắm bn tự làm sẽ thông minh hơn
Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)
Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)
Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)
\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)
\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)
\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\) (*)
Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)
Do đó từ (*) suy ra \(a>b\).
Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.
Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)
Thay vào biểu thức B, ta có \(B=x^2+2x+10\)
\(B=\left(x+1\right)^2+9\) \(\ge9\).
Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)
Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)
Ta có : \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Xét : \(\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{3}{4}.\left(x-y\right)^2+\dfrac{5}{4}.\left(x+y\right)^2}\)
\(\ge\sqrt{\dfrac{5}{4}.\left(x+y\right)^2}=\dfrac{\sqrt{5}}{2}.\left(x+y\right)\)
\(CMTT:\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}.\left(y+z\right)\)
\(\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}.\left(x+z\right)\)
Do đó : \(P\ge\dfrac{\sqrt{5}}{2}.\left(x+y+y+z+z+x\right)=\dfrac{2\sqrt{5}.\left(x+y+z\right)}{2}\)
\(\Rightarrow P\ge\sqrt{5}.\left(x+y+z\right)\)
Ta có : BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
Mà : \(xy+yz+zx=3\)
\(\Rightarrow\left(x+y+z\right)^2\ge9\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P_{min}=3\sqrt{5}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=y=z=1\)
\(A=\frac{3x^2+3xy+3y^2-2x^2-4xy-2y^2}{x^2+xy+y^2}=3-\frac{2\left(x+y\right)^2}{x^2+xy+y^2}\le3\)
\(A=\frac{\frac{1}{3}x^2+\frac{1}{3}xy+\frac{1}{3}y^2+\frac{2}{3}x^2-\frac{4}{3}xy+\frac{2}{3}y^2}{x^2+xy+y^2}=\frac{1}{3}+\frac{\frac{2}{3}\left(x-y\right)^2}{x^2+xy+y^2}\ge\frac{1}{3}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
\(A=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left[x-2+\frac{10-x^2}{x+2}\right]\) ĐKXĐ : \(x\ne0;x\ne\pm2\)
\(A=\left[\frac{x^2}{x\left(x+2\right)\left(x-2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\left[\frac{x^2-4}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(A=\left[\frac{3x^2}{3x\left(x+2\right)\left(x-2\right)}-\frac{6x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}+\frac{3x\left(x+2\right)}{3x\left(x+2\right)\left(x-2\right)}\right]:\frac{6}{x+2}\)
\(A=\left[\frac{3x^2-6x^2-12x+3x^2+6x}{3x\left(x+2\right)\left(x-2\right)}\right].\frac{x+2}{6}\)
\(A=\frac{-x}{3x\left(x-2\right)}\)
\(A=\frac{-1}{3x-6}\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Ta có : \(\frac{3x^2-8x+6}{x^2-2x+1}=\frac{2x^2-4x+2-4x+x^2+4}{\left(x-1\right)^2}\)\(=\frac{2\left(x-1\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}\ge0\)
Rút gọn hết ta được 2\(\ge0\)vậy GTNN của E=2 \(\Leftrightarrow\)x-1=0\(\Leftrightarrow\)x=1
Ta có \(E=\frac{3x^2-8x+6}{x^2-2x+1}=\frac{3\left(x^2-2x+1\right)-2\left(x-1\right)+1}{\left(x-1\right)^2}=3-\frac{2}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(t=\frac{1}{x-1}\Rightarrow E=t^2-2t+3=\left(t-1\right)^2+2\ge2\)
Vậy min E = 2 khi t = 1 hay \(\frac{1}{x-1}=1\Rightarrow x=2.\)