K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Các vế đều dương nên bình phương hai vế ta được bất đẳng thức tương đương:

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2>a+b+c\)

\(\Leftrightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)>a+b+c\)

\(\Leftrightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)>0\)

Bất đẳng thức cuối luôn đúng với a, b, c > 0.

Ta có

\(\sqrt{a+b}+\sqrt{a-b}< \sqrt{a+c}+\sqrt{a-c}\)

\(\Rightarrow\frac{\sqrt{a+b}+\sqrt{a-b}}{2}< \frac{\sqrt{a+c}+\sqrt{a-c}}{2}\)

\(\Rightarrowđpcm\)(liên hợp)

Asp dụng bđt AM-GM ta có

\(\frac{\left(\frac{b+c}{a}+1\right)}{2}\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\) hay  \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự

\(\sqrt{\frac{b}{b+c}}\ge\frac{2b}{a+b+c}\)(2)

\(\sqrt{\frac{c}{c+a}}\ge\frac{2c}{a+b+c}\)(3)

Từ (1),(2),(3)  ta có

\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{\frac{a}{a+b}}=1\\\sqrt{\frac{b}{b+c}}=1\\\sqrt{\frac{c}{c+a}}=1\end{cases}}\)(vô lí ) 

Vậy dấu "=" không xảy ra 

do đó \(VT>2\)

18 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★      bạn viết sai rồi kia. xem đề coi có sai ko đã

30 tháng 4 2020

Áp dụng BĐT AM-GM ta có a+b+c\(\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự ta có:\(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\end{cases}}\)

=> \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra <=>\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow a=b=c=0}\)(trái với giả thiết)

Vậy dấu "=" không xảy ra => đpcm

30 tháng 4 2020

Áp dụng BĐT Cô-si,ta có :

\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{b+c+a}{2a}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng từng vế theo vế, ta được :

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0}\)( trái với giả thiết vì a,b,c > 0 )

Nên dấu "=" không xảy ra

Vậy ...

4 tháng 9 2016

Ta có a + b + \(2\sqrt{ab}\)> c

<=> \(2\sqrt{ab}\)> 0 (đúng)

Ta có a3 + b\(2ab\sqrt{ab}\)> c3 = a+ b+ 3ab(a + b)

<=> ab(\(2\sqrt{ab}\)- 3a - 3b) >0 (sai)

Vậy cái thứ 2 là dấu ngược lại mới đúng

26 tháng 7 2018

Áp dụng bất đẳng thức cô - si cho 2 số không âm ta có :

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)\)

\(\Rightarrow\dfrac{\sqrt{c\left(a-c\right)}}{\sqrt{ab}}+\dfrac{\sqrt{c\left(b-c\right)}}{\sqrt{ab}}\le1\)

\(\Rightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\left(đpcm\right)\)