1+ 2+ 3+ 4+ ......+( n - 3)+ (n - 2)+ (n - 1)+ n
MN GIÚP VS M ĐG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Hoành độ giao điểm 2 đường thẳng đó là:
\(2x-3=x+1\Leftrightarrow x=4\)
Tung độ giao điểm 2 đường thẳng đó là:
\(y=2x-3=2.1-3=-1\)
Vậy tọa độ giao điểm 2 đường thẳng đó là:\(\left(4;-1\right)\)
2, Để đường thẳng (d1) đi qua A(1;-2) thì:
\(-2=\left(2m-1\right).1+n+2\\ \Leftrightarrow2m-1+n+2+2=0\\ \Leftrightarrow2m+n+3=0\left(1\right)\)
Để đường thẳng (d2) đi qua A(1;-2) thì:
\(-2=2n.1+2m-3\\ \Leftrightarrow2n+2m-3+2=0\\ \Leftrightarrow2n+2m-1=0\left(2\right)\)
Từ (1), (2) ta có hệ: \(\left\{{}\begin{matrix}2m+n+3=0\\2n+2m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}\\n=4\end{matrix}\right.\)
1) Xét phương trình hoành độ giao điểm của 2 đường thẳng trên ta có:
\(2x-3=x+1.\\ \Leftrightarrow2x-x=1+3.\\ \Leftrightarrow x=4.\\ \Rightarrow y=5.\)
Tọa độ giao điểm của 2 đường thẳng trên là \(\left(4;5\right).\)
2. Thay tọa độ điểm \(A\left(1;-2\right)\) vào 2 phương trình đường trên ta có:
\(\left\{{}\begin{matrix}\left(2m-1\right)+n+2=-2.\\2n+2m-3=-2.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+n=-3.\\2m+2n=1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}.\\m=4.\end{matrix}\right.\)
1.
Phương trình hoành độ giao điểm:
\(2x-3=x+1\Rightarrow x=4\)
\(\Rightarrow y=5\)
Vậy tọa độ giao điểm là \(\left(4;5\right)\)
2.
Hai đường thẳng cắt nhau tại A khi chúng không song song nhau và cùng đi qua A
\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne2n\\\left(2m-1\right).1+n+2=-2\\2n.1+2m-3=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ne2n\\2m+n=-3\\2m+2n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=-\dfrac{7}{2}\end{matrix}\right.\)