tìm y biết: (y+3)^3 - (y+1)^3= 56
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 x y + (1/3 + 1/9 + 1/27 + 1/81) = 56/81
4 x y + (27/81 + 9/81 + 3/81 + 1/81) = 56/81
4 x y + 40/81 = 56/81
4 x y = 56/81 - 40/81 = 16/81
y = 4/81
\(\left(y+\frac{1}{3}\right) +\left(y+\frac{1}{9}\right)+ \left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(y\cdot4+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)=\frac{56}{81}\)
\(y\cdot4+\frac{40}{81}=\frac{56}{81}\)
\(y\cdot4=\frac{56}{81}-\frac{40}{81}\)
\(y\cdot4=\frac{16}{81}\)
\(y=\frac{16}{81}:4\)
\(y=\frac{4}{81}\)
\(\left(y+\frac{1}{3}\right)+\left(y+\frac{1}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(\Leftrightarrow4y+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\right)=\frac{56}{81}\)
\(\Leftrightarrow4y+\frac{40}{81}=\frac{56}{81}\)
\(\Leftrightarrow4y=\frac{56}{81}-\frac{40}{81}\)
\(\Leftrightarrow4y=\frac{16}{81}\)
\(\Rightarrow y=\frac{16}{81}\div4\)
\(\Rightarrow y=\frac{4}{81}\)
Vậy y có giá trị =\(\frac{4}{81}\)
a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)
\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)
\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)
\(\Rightarrow48x-46=0\)
\(\Rightarrow x=\frac{23}{24}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow8x+17=16\)
\(\Rightarrow8x=-1\)
\(\Rightarrow x=\frac{-1}{8}\)
c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)
\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)
\(\Rightarrow24y+25=49\)
\(\Rightarrow24y=24\)
\(\Rightarrow y=1\)
d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)
\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)
\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)
\(\Rightarrow3y^2+12y+13=28\)
\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)
\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)
\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
a)
Đặt x/2=x/5=k(k thuộc N*) suy ra x=2k và y=5k (1)
Thay (1) vao xy=40 ta được 2k5k=40
10k2=40
k2=4
k= 2 hoặc -2
+) Nếu k=2 thì x=2.2=4 và y=2.5=10
+) Nếu k=-2 thì x=-2.2=-4 và y=-2.5=-10
VẬY (x,y) thuộc {(4,10);(-4,-10)}
Tìm y :
( y + 1/3 ) + ( y + 1/9 ) + ( y + 1/27 ) + ( y + 1/81 ) = 56/81
y + 1/3 + y + 1/9 + y + 1/27 + y + 1/81 = 56/81
y x 4 + ( 1/3 + 1/9 + 1/27 +1/81 ) = 56/81
y x 4 + ( 27/81 + 9/81 + 3/81 + 1/81 ) = 56/81
y x 4 + 40/81 = 56/81
y x 4 = 56/81 - 40/81
y x 4 = 16/81
y = 16/81 : 4
y = 4/81
\(3x=4y\)và \(x+y=56\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{56}{7}=8\)
\(\Rightarrow x=4.8=32\)
\(\Rightarrow y=3.8=24.\)
Ta có :3x=4y\(\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và x+y=56
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{56}{7}=8\)
Suy ra : \(\frac{x}{4}=8\Rightarrow x=32\)
\(\frac{y}{3}=8\Rightarrow y=24\)
Vậy :x=32 và y=24
y * 7 * 8/12 * 56 = 3/4
y = 3/4 chia 56 chia 8/12 chia 7
y = 9/3136
to ko biet dau nhe
\(\left(y+3\right)^3-\left(y+1\right)^3=56\)
\(\Rightarrow[\left(y+3\right)-\left(y+1\right)][\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2-56=0\)
\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)-56=0\)
\(\Rightarrow y^2+6y+9+y^2+4y+3+y^2+2y+1-28=0\)
\(\Rightarrow3y^2+12y-15=0\)
\(\Rightarrow y^2+4y-5=0\)
\(\Rightarrow\left(y-1\right)\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=1\\x=-5\end{cases}}\)