K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

vào tìm kiems có câu tương tự nhé

25 tháng 5 2021

\(M=9x^2-6x+1+x+\frac{1}{9x}+2019\)

\(M=\left(3x-1\right)^2+x+\frac{1}{9x}+2019\ge\left(3x-1\right)^2+\frac{2}{3}+2019\left(AM-GM\right)\)

\(MinM=\frac{6059}{3}\)

Đẳng thức xảy ra khi x=1/3

23 tháng 4 2019

\(A=\left(9x^2-6x+1\right)+\left(x+\frac{1}{9x}\right)+9\)

\(=\left(3x-1\right)^2+\left(x+\frac{1}{9x}\right)+9\)

\(\ge0+2\sqrt{x.\frac{1}{9x}}+9\)

\(=0+\frac{2}{3}+9=\frac{29}{3}\)

3 tháng 7 2020

\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)

3 tháng 7 2020

Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)

Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)

\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)

Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)

\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)

Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)

7 tháng 4 2016

1425 :)) đúng chắc

7 tháng 4 2016

google

16 tháng 7 2016

ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\)\(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.

9 tháng 7 2016

bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.

đáp án: Min A=  2

9 tháng 7 2016

dùng côsi ra = 1 chắc v

10 tháng 7 2016

ê tuấn nếu cô-si thì mk nghĩ phải =2 chứ sao =1 được 

20 tháng 3 2016

9x^2 +3x+1 tất cả chia cho x hay mỗi 1/x vậy bạn??
nếu là (9x^2+3x+1)/x thì mình giải nhá
chia cho x =) biểu thức trên sẽ bằng 9x+3+1/x 
Áp dụng bất đẳng thức cosi của 9x và 1/x ta có : 9x+1/x lớn hơn hoặc bằng 2 căn bậc 2 của 9x nhân 1/x =) lớn hơn hoặc bằng 6
=) Min M = 3+ 6 =9 tại x= 1/3 và x= -1/3 nha bạn 

NV
27 tháng 4 2019

\(P=9x^2-6x+1+x+\frac{1}{9x}+9\)

\(P=\left(3x-1\right)^2+x+\frac{1}{9x}+9\ge\left(3x-1\right)^2+2\sqrt{\frac{x}{9x}}+9\)

\(P\ge\left(3x-1\right)^2+\frac{29}{3}\ge\frac{29}{3}\)

\(\Rightarrow P_{min}=\frac{29}{3}\) khi \(x=\frac{1}{3}\)