Cho B= -5/(x+3)2 + 1. Tìm x ϵ Z để B đạt GTNN
Giúp mình với ạ ❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x - 15 = -75 -x
4x+x = -75 + 15
5x = 60
x= 60: 5
=> x= 12
b) 3| x-7| = 21
|x-7|= 21:3
|x-7|=7
=> x-7 =7 hoặc x-7=-7
+) x-7=7
x=7+7=14
+) x-7=-7
x= -7+7=0
=> x=14 hoặc x=0
c) Áp dụng t/c phân số bằng nhau
=> x= \(\frac{-3.\left(-2\right)}{6}\)=\(\frac{6}{6}\)=1
Thay x=1 => y= \(\frac{\left(-2\right).\left(-18\right)}{1}\)=\(\frac{36}{1}\)=36
Thay y =36 => z=\(\frac{\left(-18\right).24}{36}\)=\(\frac{-432}{36}\)=-12
vậy (x,y,z)= (1;36;-12)
(câu d dài quá vs lại cx dễ nên bn tự lm nha mk chỉ giúp đến đây thôi)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a: \(P=\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\)
căn x-3>=-3
=>5/căn x-3<=-5/3
=>P<=-5/3+1=-2/3
Dấu = xảy ra khi x=0
\(a+b=2x-5\)
=>\(\left(a+b\right)^2=\left(2x-5\right)^2\)
=>\(a^2+b^2+2ab=4x^2-20x+25\)
=>\(2x^2+4x-1+2ab=4x^2-20x+25\)
=>\(2ab=2x^2-24x+26\)
=>\(ab=x^2-12x+13=x^2-12x+36-23=\left(x-6\right)^2-23\ge-23\).
\(ab\) đạt giá trị nhỏ nhất là -23 ⇔\(x-6=0\)⇔\(x=6\)
Bài 1 :
A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN
* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0 (1)
* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0 (2)
Từ (1) và (2) => \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)
- Phân số \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)
- Mà x thuộc Z => 4 - x thuộc Z (c)
- Từ (a), (b), và (c) => 4 - x = 1 => x = 3
Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5
\(\left(x+3\right)^2>=0\forall x\)
=>\(\left(x+3\right)^2+1>=1\forall x\)
=>\(\dfrac{5}{\left(x+3\right)^2+1}< =5\forall x\)
=>\(B=-\dfrac{5}{\left(x+3\right)^2+1}>=-5\forall x\)
Dấu '=' xảy ra khi x+3=0
=>x=-3