K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

\(A=\dfrac{1}{\sqrt{1.1999}}+\dfrac{1}{\sqrt{2.1998}}+...+\dfrac{1}{\sqrt{1999.1}}>\dfrac{1}{\dfrac{1+1999}{2}}+\dfrac{1}{\dfrac{2+1998}{2}}+...+\dfrac{1}{\dfrac{1999+1}{2}}\)

\(=\dfrac{1}{1000}+\dfrac{1}{1000}+...+\dfrac{1}{1000}=1,999\)

8 tháng 8 2019

Áp dụng bất đẳng thức Cô-si:

\(\frac{1}{\sqrt{1\cdot1999}}\ge\frac{1}{\frac{1+1999}{2}}=\frac{1}{1000}\)

Vì dấu "=" không xảy ra nên \(\frac{1}{\sqrt{1\cdot1999}}>\frac{1}{1000}\)

Tương tự ta có : \(\frac{1}{\sqrt{2\cdot1998}}>\frac{1}{1000};...;\frac{1}{\sqrt{1999\cdot1}}>\frac{1}{1000}\)

\(\Rightarrow\frac{1}{\sqrt{1\cdot1999}}+\frac{1}{\sqrt{2\cdot1998}}+...+\frac{1}{\sqrt{1999\cdot1}}>\frac{2000}{1000}=2>1,999\)

Vậy...

17 tháng 8 2017

Câu a :

Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :

\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)

\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)

.......................................................

\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)

Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)

\(\Rightarrowđpcm\)

17 tháng 8 2017

Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.

21 tháng 2 2016

nhưng bạn phải k nhé 

21 tháng 2 2016

Bạn có thể giúp mình đc ko?

30 tháng 12 2019

ta có :\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a>0;b>0\right)\)

\(\Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Leftrightarrow ab-a-b+1=1\Leftrightarrow ab-a-b=0\)(1)

ta lại có :\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow\frac{a+b}{ab}=1\Leftrightarrow ab=a+b\left(2\right)\)

từ (1) và (2) \(\Leftrightarrow a+b-a-b=0\Leftrightarrow0=0\)(luôn đúng)

=> đpcm

25 tháng 6 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+1}+\sqrt{b+1}\right)^2\)

\(\le\left(1+1\right)\left(a+1+b+1\right)\)

\(=2\left(a+b+2\right)=2\cdot8=16\)

\(\Rightarrow VT^2\le16\Rightarrow VT\le4=VP\)

Đẳng thức xảy ra khi \(a=b=3\)

18 tháng 5 2021

Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)(1)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(Vì a + b + c = 9)

<=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\) 

<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Lại có \(\frac{a}{b}+\frac{b}{a}\ge2\)

<=>  \(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\left(\text{đúng}\right)\)

Tương tự \(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\end{cases}}\)

<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(đúng) 

=> (1) được chứng minh

18 tháng 5 2021

Áp dụng bđt Svac-xơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}=\frac{9}{9}=1\) ( Vì a+b+c=1)