CM
a) \(\frac{1}{n.\left(n+1\right)}\)= \(\frac{1}{n}\) — \(\frac{1}{n_{ }-1}\)(n thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
Có : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\)\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\) đpcm
1)Ta có:S=\(n_1^2+n_2^2+...+n_{10}^2\)=\(\left(n_1+n_2+...+n_{10}\right)^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)=2013^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)\)
Do 20132 chia 2 dư 1
\(2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)\) chia hết cho 2
=>\(2013^2-2.\left(n_1n_2+n_2n_3+.....+n_{10}.n_1\right)-1\) chia hết cho 2
=>S-1 chia hết cho 2
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)
\(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n}\right)\)(n>=2)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot n-1}{2\cdot3\cdot4\cdot...\cdot n}\)(rút gọn đi)
\(=\frac{1}{n}\)
mk k chắc nữa
Chúc bạn học tốt!^_^
Đề bị sai. \(\frac{1}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(N\in\)N* \(\Rightarrow\)N* \(\in\left\{1;2;3;4;.....\right\}\)
Lấy số 2 trong tập N* trên làm ví dụ để tiện chứng minh:
Ta có đề bài mới: Chứng minh
\(\frac{1}{2.\left(2+1\right)}=\frac{1}{2}-\frac{1}{2-1}\)
\(\Leftrightarrow\frac{1}{2.3}=\frac{1}{2}-\frac{1}{2-1}\)
\(\Leftrightarrow\frac{1}{6}=\frac{1}{2}-\frac{1}{2-1}\)
\(\Leftrightarrow\frac{1}{6}=\frac{1}{2}-\frac{1}{1}\)
\(=\frac{1}{2}-1=-\frac{1}{2}\)
Mà \(\frac{1}{2.\left(2+1\right)}=\frac{1}{6}\ne-\frac{1}{2}\)
\(\Rightarrow\)Đề sai!