K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2024

a.

Ta có: \(\widehat{BDE}+\widehat{EDF}+\widehat{D_1}=180^0\)

\(\Rightarrow\widehat{BDE}+90^0+\widehat{D_1}=180^0\)

\(\Rightarrow\widehat{BDE}+\widehat{D_1}=90^0\)

Mà \(\widehat{D_1}=\widehat{D_2}\Rightarrow\widehat{BDE}+\widehat{D_2}=90^0\)

Lại có \(\widehat{HDE}+\widehat{D_2}=\widehat{EDF}=90^0\)

\(\Rightarrow\widehat{BDE}=\widehat{HDE}\)

\(\Rightarrow DE\) là phân giác của \(\widehat{BDH}\)

b.

Xét hai tam giác vuông BDE và HDE có:

\(\left\{{}\begin{matrix}DE-chung\\\widehat{BDE}=\widehat{HDE}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta_{\perp}BDE=\Delta_{\perp}HDE\left(ch-gn\right)\)

\(\Rightarrow BE=HE\)

Tương tự, xét 2 tam giác vuông HDF và ADF có:

\(\left\{{}\begin{matrix}DF-chung\\\widehat{D_2}=\widehat{D_1}\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\Delta_{\perp}HDF=\Delta_{\perp}ADF\left(ch-gn\right)\)

\(\Rightarrow AF=HF\)

\(\Rightarrow HE+HF=BE+AF\)

\(\Rightarrow EF=BE+AF\)

25 tháng 9 2021

Hình đây nhaundefined

 

31 tháng 3 2017

thathu mà

9 tháng 8 2017

Cho tam giác ABC có góc A = 120 độ . các đường phân giác AD,BE,CF 

a, chứng minh rằng DE là phân giác góc ADC

b, EDF =90 độ

bài làm

hình ảnh tượng trưng cho em dễ tưởng tượng thôi đấy nhé [​IMG]

[​IMG]

_________



a)
chị gợi ý nhé :

vì AD là tia phân giác của góc A nên

BAD^=CAD^=60oBAD^=CAD^=60o

=> góc ngoài của đỉnh A = 180 - 120 = 60

__

theo t/c của 3 đường phân giác thì 3 đường đều giao tại 1 điểm

mà em có BE là tia P.G trong

AE là tia phân giác ngoài đỉnh A

2 tia này đã giao với nhau vậy => DE giao với 3 tia này => đpcm

là gợi ý thôi em nhé, em đừng chép lời vào kẻo bị đánh giá về ngôn ngữ toán học đấy

b)
cm DF là tia phân giác ngoài của tam giác ADC ,
=> góc EDF =90 độ

___

từ phần a => BED^=EDC^−EBD^BED^=EDC^−EBD^ 

= ADC^−ABC^2=BAD2ADC^−ABC^2=BAD2 
__________________

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

=>ΔABD=ΔAED

=>AB=AE

b: AB=AE

DB=DE

=>AD là trung trực của BE