tìm x,biết: 2/3.x+2023/2024=5/3-1/2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)
\(\Rightarrow2023x+4090506=2024-2024-20232023\)
\(\Rightarrow x+4090506=-2023\)
\(\Rightarrow2023x=-2023-4090506\)
\(\Rightarrow2023x=-4092529\)
\(\Rightarrow x=-2023\).
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
ĐKXĐ: y>=0
\(\left(x+1\right)^{2024}>=0\forall x\)
\(\left(\sqrt{y-1}\right)^{2023}>=0\forall y\) thỏa mãn ĐKXĐ
=>\(\left(x+1\right)^{2024}+\left(\sqrt{y-1}\right)^{2023}>=0\forall x,y\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\dfrac{2}{3}x+\dfrac{2023}{2024}=\dfrac{5}{3}-\dfrac{1}{2024}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{3}-\dfrac{1}{2024}-\dfrac{2023}{2024}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{3}-1=\dfrac{2}{3}\)
=>x=1